基于小波域稀疏插值的图像分辨率增强

Román Chavez, Volodymyr Ponomaryow, Fernando Castro
{"title":"基于小波域稀疏插值的图像分辨率增强","authors":"Román Chavez, Volodymyr Ponomaryow, Fernando Castro","doi":"10.35429/ejt.2020.7.4.18-.27","DOIUrl":null,"url":null,"abstract":"The image processing algorithms collectively known as super-resolution (SR) have proven effective in producing high-quality imagery from low-resolution (LR) images. This paper focuses on a novel image resolution enhancement method employing the wavelet domain techniques. In order to preserve more edge information, additional edge extraction step is proposed employing high-frequency (HF) sub-band images - low-high (LH), high-low (HL), and high-high (HH) - via the Discrete Wavelet Transform (DWT). In the designed procedure, the LR image is used in the sparse interpolation for the resolution-enhancement obtaining low-low (LL) sub- band. Additionally, all sub-bands (LL, LH, HL and HH) are performed via the Lanczos interpolation. Finally, the estimated sub-band images are used to form the new high-resolution (HR) image using the inverse DWT (IDWT). Experimental results on real data sets have confirmed the effectiveness of the proposed framework in terms of objective criteria as well as in subjective perception.","PeriodicalId":356684,"journal":{"name":"ECORFAN Journal Taiwan","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image resolution enhancement via sparse interpolation on wavelet domain\",\"authors\":\"Román Chavez, Volodymyr Ponomaryow, Fernando Castro\",\"doi\":\"10.35429/ejt.2020.7.4.18-.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image processing algorithms collectively known as super-resolution (SR) have proven effective in producing high-quality imagery from low-resolution (LR) images. This paper focuses on a novel image resolution enhancement method employing the wavelet domain techniques. In order to preserve more edge information, additional edge extraction step is proposed employing high-frequency (HF) sub-band images - low-high (LH), high-low (HL), and high-high (HH) - via the Discrete Wavelet Transform (DWT). In the designed procedure, the LR image is used in the sparse interpolation for the resolution-enhancement obtaining low-low (LL) sub- band. Additionally, all sub-bands (LL, LH, HL and HH) are performed via the Lanczos interpolation. Finally, the estimated sub-band images are used to form the new high-resolution (HR) image using the inverse DWT (IDWT). Experimental results on real data sets have confirmed the effectiveness of the proposed framework in terms of objective criteria as well as in subjective perception.\",\"PeriodicalId\":356684,\"journal\":{\"name\":\"ECORFAN Journal Taiwan\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECORFAN Journal Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35429/ejt.2020.7.4.18-.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECORFAN Journal Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35429/ejt.2020.7.4.18-.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

被统称为超分辨率(SR)的图像处理算法已被证明可以有效地从低分辨率(LR)图像中生成高质量的图像。研究了一种基于小波域技术的图像分辨率增强方法。为了保留更多的边缘信息,提出了利用高频(HF)子带图像——低-高(LH)、高-低(HL)和高-高(HH)——通过离散小波变换(DWT)进行边缘提取的步骤。在设计的程序中,使用LR图像进行稀疏插值以增强分辨率,获得low-low (LL)子带。此外,所有子波段(LL, LH, HL和HH)都通过Lanczos插值进行。最后,利用估计的子带图像利用逆小波变换(IDWT)形成新的高分辨率(HR)图像。在真实数据集上的实验结果证实了所提出的框架在客观标准和主观感知方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image resolution enhancement via sparse interpolation on wavelet domain
The image processing algorithms collectively known as super-resolution (SR) have proven effective in producing high-quality imagery from low-resolution (LR) images. This paper focuses on a novel image resolution enhancement method employing the wavelet domain techniques. In order to preserve more edge information, additional edge extraction step is proposed employing high-frequency (HF) sub-band images - low-high (LH), high-low (HL), and high-high (HH) - via the Discrete Wavelet Transform (DWT). In the designed procedure, the LR image is used in the sparse interpolation for the resolution-enhancement obtaining low-low (LL) sub- band. Additionally, all sub-bands (LL, LH, HL and HH) are performed via the Lanczos interpolation. Finally, the estimated sub-band images are used to form the new high-resolution (HR) image using the inverse DWT (IDWT). Experimental results on real data sets have confirmed the effectiveness of the proposed framework in terms of objective criteria as well as in subjective perception.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信