Shiliang Liu, G. Csaba, X. Hu, E. Varga, M. Niemier, G. Bernstein, W. Porod
{"title":"纳米磁体逻辑的最小能量状态引导物理设计","authors":"Shiliang Liu, G. Csaba, X. Hu, E. Varga, M. Niemier, G. Bernstein, W. Porod","doi":"10.1145/2463209.2488865","DOIUrl":null,"url":null,"abstract":"Nanomagnet Logic (NML) accomplishes computation through magnetic dipole-dipole interactions. It has the potential for low-power dissipation, radiation hardness and non-volatility. NML circuits have been designed to process and move information via nearest neighbor, device-to-device coupling. However, the resultant layouts often fail to function correctly. This paper reveals an important cause of such failures showing that a robust NML layout must take into account not only nearest neighbor, but also the next nearest neighbor couplings. A new design method is then introduced to address this issue that leverages the minimum-energy states of an NML circuit to guide the layout process. Case studies show that the new method is efficient and effective in arriving at correct NML layouts.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Minimum-energy state guided physical design for Nanomagnet Logic\",\"authors\":\"Shiliang Liu, G. Csaba, X. Hu, E. Varga, M. Niemier, G. Bernstein, W. Porod\",\"doi\":\"10.1145/2463209.2488865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomagnet Logic (NML) accomplishes computation through magnetic dipole-dipole interactions. It has the potential for low-power dissipation, radiation hardness and non-volatility. NML circuits have been designed to process and move information via nearest neighbor, device-to-device coupling. However, the resultant layouts often fail to function correctly. This paper reveals an important cause of such failures showing that a robust NML layout must take into account not only nearest neighbor, but also the next nearest neighbor couplings. A new design method is then introduced to address this issue that leverages the minimum-energy states of an NML circuit to guide the layout process. Case studies show that the new method is efficient and effective in arriving at correct NML layouts.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimum-energy state guided physical design for Nanomagnet Logic
Nanomagnet Logic (NML) accomplishes computation through magnetic dipole-dipole interactions. It has the potential for low-power dissipation, radiation hardness and non-volatility. NML circuits have been designed to process and move information via nearest neighbor, device-to-device coupling. However, the resultant layouts often fail to function correctly. This paper reveals an important cause of such failures showing that a robust NML layout must take into account not only nearest neighbor, but also the next nearest neighbor couplings. A new design method is then introduced to address this issue that leverages the minimum-energy states of an NML circuit to guide the layout process. Case studies show that the new method is efficient and effective in arriving at correct NML layouts.