Maria-Gabriella Di Benedetto, S. Boldrini, Carmen Juana M. Martin, J. R. Diaz
{"title":"基于特征提取的网络自动识别:以ISM波段为例","authors":"Maria-Gabriella Di Benedetto, S. Boldrini, Carmen Juana M. Martin, J. R. Diaz","doi":"10.4108/ICST.CROWNCOM2010.9274","DOIUrl":null,"url":null,"abstract":"Automatic network recognition offers a promising framework for the integration of the cognitive concept at the network layer. This work addresses the problem of automatic classification of technologies operating in the ISM band, with particular focus on Wi-Fi vs. Bluetooth recognition. The proposed classifier is based on feature extraction related to time-varying patterns of packet sequences, i.e. MAC layer procedures, and adopts different linear classification algorithms. Results of classification confirmed the ability to reveal both technologies based on Mac layer feature identification.","PeriodicalId":193648,"journal":{"name":"2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Automatic network recognition by feature extraction: A case study in the ISM band\",\"authors\":\"Maria-Gabriella Di Benedetto, S. Boldrini, Carmen Juana M. Martin, J. R. Diaz\",\"doi\":\"10.4108/ICST.CROWNCOM2010.9274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic network recognition offers a promising framework for the integration of the cognitive concept at the network layer. This work addresses the problem of automatic classification of technologies operating in the ISM band, with particular focus on Wi-Fi vs. Bluetooth recognition. The proposed classifier is based on feature extraction related to time-varying patterns of packet sequences, i.e. MAC layer procedures, and adopts different linear classification algorithms. Results of classification confirmed the ability to reveal both technologies based on Mac layer feature identification.\",\"PeriodicalId\":193648,\"journal\":{\"name\":\"2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.CROWNCOM2010.9274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.CROWNCOM2010.9274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic network recognition by feature extraction: A case study in the ISM band
Automatic network recognition offers a promising framework for the integration of the cognitive concept at the network layer. This work addresses the problem of automatic classification of technologies operating in the ISM band, with particular focus on Wi-Fi vs. Bluetooth recognition. The proposed classifier is based on feature extraction related to time-varying patterns of packet sequences, i.e. MAC layer procedures, and adopts different linear classification algorithms. Results of classification confirmed the ability to reveal both technologies based on Mac layer feature identification.