用统计时序模型诊断时延缺陷

Angela Krstic, Li-C. Wang, K. Cheng, J. Liou
{"title":"用统计时序模型诊断时延缺陷","authors":"Angela Krstic, Li-C. Wang, K. Cheng, J. Liou","doi":"10.1109/VTEST.2003.1197672","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of delay defect diagnosis based on statistical timing models. We propose a diagnosis algorithm that can effectively utilize statistical timing information based upon single defect assumption. We evaluate its performance and its applicability to single as well as multiple defect scenarios via statistical defect injection and simulation. With a statistical timing analysis framework developed in the past, we demonstrate the new concept in statistical delay defect diagnosis, and discuss experimental results using benchmark circuits.","PeriodicalId":292996,"journal":{"name":"Proceedings. 21st VLSI Test Symposium, 2003.","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Diagnosis of delay defects using statistical timing models\",\"authors\":\"Angela Krstic, Li-C. Wang, K. Cheng, J. Liou\",\"doi\":\"10.1109/VTEST.2003.1197672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem of delay defect diagnosis based on statistical timing models. We propose a diagnosis algorithm that can effectively utilize statistical timing information based upon single defect assumption. We evaluate its performance and its applicability to single as well as multiple defect scenarios via statistical defect injection and simulation. With a statistical timing analysis framework developed in the past, we demonstrate the new concept in statistical delay defect diagnosis, and discuss experimental results using benchmark circuits.\",\"PeriodicalId\":292996,\"journal\":{\"name\":\"Proceedings. 21st VLSI Test Symposium, 2003.\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 21st VLSI Test Symposium, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTEST.2003.1197672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 21st VLSI Test Symposium, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTEST.2003.1197672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文研究了基于统计时序模型的延迟缺陷诊断问题。提出了一种基于单缺陷假设的有效利用统计时序信息的诊断算法。我们通过统计缺陷注入和模拟来评估其性能及其对单个和多个缺陷场景的适用性。本文利用已有的统计时序分析框架,阐述了统计时延缺陷诊断的新概念,并讨论了基准电路的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of delay defects using statistical timing models
In this paper, we study the problem of delay defect diagnosis based on statistical timing models. We propose a diagnosis algorithm that can effectively utilize statistical timing information based upon single defect assumption. We evaluate its performance and its applicability to single as well as multiple defect scenarios via statistical defect injection and simulation. With a statistical timing analysis framework developed in the past, we demonstrate the new concept in statistical delay defect diagnosis, and discuss experimental results using benchmark circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信