椭圆界面问题的不连续Galerkin浸入有限体积元法

Zhongyan Liu, Huanzhen Chen
{"title":"椭圆界面问题的不连续Galerkin浸入有限体积元法","authors":"Zhongyan Liu, Huanzhen Chen","doi":"10.1109/ICIST.2014.6920344","DOIUrl":null,"url":null,"abstract":"By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve the elliptic interface problems. The existence and uniqueness of the discrete scheme is proved, and an optimal energy-norm error estimate and L2-norm estimate for the numerical solution are obtained.","PeriodicalId":306383,"journal":{"name":"2014 4th IEEE International Conference on Information Science and Technology","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discontinuous Galerkin immerse finite volume element method for elliptic interface problems\",\"authors\":\"Zhongyan Liu, Huanzhen Chen\",\"doi\":\"10.1109/ICIST.2014.6920344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve the elliptic interface problems. The existence and uniqueness of the discrete scheme is proved, and an optimal energy-norm error estimate and L2-norm estimate for the numerical solution are obtained.\",\"PeriodicalId\":306383,\"journal\":{\"name\":\"2014 4th IEEE International Conference on Information Science and Technology\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 4th IEEE International Conference on Information Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2014.6920344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th IEEE International Conference on Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2014.6920344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将试验函数空间选择为浸入式有限元空间,将试验函数空间选择为分段常数函数空间,提出了求解椭圆界面问题的不连续Galerkin浸入式有限体积元方法。证明了离散格式的存在唯一性,得到了数值解的最优能量范数误差估计和l2范数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discontinuous Galerkin immerse finite volume element method for elliptic interface problems
By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve the elliptic interface problems. The existence and uniqueness of the discrete scheme is proved, and an optimal energy-norm error estimate and L2-norm estimate for the numerical solution are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信