立体匹配算法中的自适应相似度融合策略

Baoping Li
{"title":"立体匹配算法中的自适应相似度融合策略","authors":"Baoping Li","doi":"10.1109/ICIEA.2016.7603650","DOIUrl":null,"url":null,"abstract":"Cost initialization is an important step in both local and global stereo matching algorithms. Different similarity measures may perform differently in a particular location depending on the image structure. Different from the traditional similarity fusion strategies, we present a new fusion strategy which fuses similarity measures adaptively based on their performance on different image regions. The experimental results demonstrate that the proposed adaptive similarity fusion algorithm used in both local and global stereo matching algorithms is capable of providing high-quality disparity maps comparable to other fusion strategies.","PeriodicalId":283114,"journal":{"name":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive similarity fusion strategy in stereo matching algorithm\",\"authors\":\"Baoping Li\",\"doi\":\"10.1109/ICIEA.2016.7603650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cost initialization is an important step in both local and global stereo matching algorithms. Different similarity measures may perform differently in a particular location depending on the image structure. Different from the traditional similarity fusion strategies, we present a new fusion strategy which fuses similarity measures adaptively based on their performance on different image regions. The experimental results demonstrate that the proposed adaptive similarity fusion algorithm used in both local and global stereo matching algorithms is capable of providing high-quality disparity maps comparable to other fusion strategies.\",\"PeriodicalId\":283114,\"journal\":{\"name\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2016.7603650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2016.7603650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代价初始化是局部和全局立体匹配算法的重要步骤。根据图像结构的不同,不同的相似性度量在特定位置的表现可能不同。与传统的相似度融合策略不同,本文提出了一种基于相似度在不同图像区域上表现的自适应融合策略。实验结果表明,本文提出的自适应相似度融合算法在局部和全局立体匹配算法中都能够提供与其他融合策略相当的高质量视差图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive similarity fusion strategy in stereo matching algorithm
Cost initialization is an important step in both local and global stereo matching algorithms. Different similarity measures may perform differently in a particular location depending on the image structure. Different from the traditional similarity fusion strategies, we present a new fusion strategy which fuses similarity measures adaptively based on their performance on different image regions. The experimental results demonstrate that the proposed adaptive similarity fusion algorithm used in both local and global stereo matching algorithms is capable of providing high-quality disparity maps comparable to other fusion strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信