时间序列预测的递归神经网络实现及增强方法

Rully Soelaiman, Arief Martoyo, Yudhi Purwananto, M. Purnomo
{"title":"时间序列预测的递归神经网络实现及增强方法","authors":"Rully Soelaiman, Arief Martoyo, Yudhi Purwananto, M. Purnomo","doi":"10.1109/ICICI-BME.2009.5417296","DOIUrl":null,"url":null,"abstract":"Ensemble methods used for classification and regression have been shown that they are superior than other methods, teoritically and empirically. Adapting this method on time-series prediction is done by using boosting algorithm. On boosting algorithm, recurrent neural networks (RNN) are generated, each for training on a different set of examples on time-series data, then the results for each of this base learners will be combined and resulting on a final hypothesis. The difference between our algorithm and the original algorithm is the introduction of a new parameter for tuning the boosting influence on given examples. Our boosting result is then tested on real time-series forecasting, using a natural dataset and function-generated time series. On the experiment result, it can be proved that ensemble method that we used is better than standard method, backpropagation through time for one step ahead time series prediction.","PeriodicalId":191194,"journal":{"name":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementation of recurrent neural network and boosting method for time-series forecasting\",\"authors\":\"Rully Soelaiman, Arief Martoyo, Yudhi Purwananto, M. Purnomo\",\"doi\":\"10.1109/ICICI-BME.2009.5417296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble methods used for classification and regression have been shown that they are superior than other methods, teoritically and empirically. Adapting this method on time-series prediction is done by using boosting algorithm. On boosting algorithm, recurrent neural networks (RNN) are generated, each for training on a different set of examples on time-series data, then the results for each of this base learners will be combined and resulting on a final hypothesis. The difference between our algorithm and the original algorithm is the introduction of a new parameter for tuning the boosting influence on given examples. Our boosting result is then tested on real time-series forecasting, using a natural dataset and function-generated time series. On the experiment result, it can be proved that ensemble method that we used is better than standard method, backpropagation through time for one step ahead time series prediction.\",\"PeriodicalId\":191194,\"journal\":{\"name\":\"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICI-BME.2009.5417296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI-BME.2009.5417296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

用于分类和回归的集成方法在理论和经验上都优于其他方法。利用增强算法将该方法应用于时间序列预测。在增强算法上,生成递归神经网络(RNN),每个网络在时间序列数据上对不同的一组样本进行训练,然后将每个基础学习者的结果组合在一起,产生最终的假设。我们的算法与原始算法的不同之处在于引入了一个新的参数来调整对给定示例的增强影响。然后使用自然数据集和函数生成的时间序列对我们的增强结果进行实时时间序列预测测试。实验结果表明,对于超前一步的时间序列预测,我们所采用的集成方法优于标准的时间反向传播方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of recurrent neural network and boosting method for time-series forecasting
Ensemble methods used for classification and regression have been shown that they are superior than other methods, teoritically and empirically. Adapting this method on time-series prediction is done by using boosting algorithm. On boosting algorithm, recurrent neural networks (RNN) are generated, each for training on a different set of examples on time-series data, then the results for each of this base learners will be combined and resulting on a final hypothesis. The difference between our algorithm and the original algorithm is the introduction of a new parameter for tuning the boosting influence on given examples. Our boosting result is then tested on real time-series forecasting, using a natural dataset and function-generated time series. On the experiment result, it can be proved that ensemble method that we used is better than standard method, backpropagation through time for one step ahead time series prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信