基于大脑情绪学习的AVR系统智能控制器的实现

Shahrizal Saat, M. R. Ghazali, Mohd Ashraf Ahmad, Nik Mohd Zaitul Akmal Mustapha, Mohd Zaidi Mohd Tumari
{"title":"基于大脑情绪学习的AVR系统智能控制器的实现","authors":"Shahrizal Saat, M. R. Ghazali, Mohd Ashraf Ahmad, Nik Mohd Zaitul Akmal Mustapha, Mohd Zaidi Mohd Tumari","doi":"10.1109/I2CACIS57635.2023.10193647","DOIUrl":null,"url":null,"abstract":"In this paper, an intelligent controller based on brain emotional learning called BELBIC is applied and optimized by Particle Swarm optimization algorithm. PSO algorithm is used to tuned twelve BELBIC controller parameters in order to improve the time domain parameters such as overshoot percentage (OS%), rise time (tr), settling time (ts) and steady state error (Ess) of the step response for an AVR system in order to minimize value of objective function based on ZLG method. This proposed PSO-BELBIC controller time domain parameters performance is compared with the PSO-PID, IKA-PID and SCA-PID controller. From the simulation, the proposed model free PSO-BELBIC controller was confirm able to provide the best objective function minimization value. This proposed PSO-BELBIC controller also able to provide superior performance to reduce overshoot percentage, steady state error and settling time compared to others controller. However, this proposed controller still have a space to improve its rising time parameter by investigate new formulation of Si and ES for BELBIC controller.","PeriodicalId":244595,"journal":{"name":"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Implementation of Brain Emotional Learning Based Intelligent Controller for AVR System\",\"authors\":\"Shahrizal Saat, M. R. Ghazali, Mohd Ashraf Ahmad, Nik Mohd Zaitul Akmal Mustapha, Mohd Zaidi Mohd Tumari\",\"doi\":\"10.1109/I2CACIS57635.2023.10193647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an intelligent controller based on brain emotional learning called BELBIC is applied and optimized by Particle Swarm optimization algorithm. PSO algorithm is used to tuned twelve BELBIC controller parameters in order to improve the time domain parameters such as overshoot percentage (OS%), rise time (tr), settling time (ts) and steady state error (Ess) of the step response for an AVR system in order to minimize value of objective function based on ZLG method. This proposed PSO-BELBIC controller time domain parameters performance is compared with the PSO-PID, IKA-PID and SCA-PID controller. From the simulation, the proposed model free PSO-BELBIC controller was confirm able to provide the best objective function minimization value. This proposed PSO-BELBIC controller also able to provide superior performance to reduce overshoot percentage, steady state error and settling time compared to others controller. However, this proposed controller still have a space to improve its rising time parameter by investigate new formulation of Si and ES for BELBIC controller.\",\"PeriodicalId\":244595,\"journal\":{\"name\":\"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CACIS57635.2023.10193647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS57635.2023.10193647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于大脑情绪学习的智能控制器BELBIC,并采用粒子群优化算法对其进行优化。利用粒子群算法对12个BELBIC控制器参数进行调谐,以提高AVR系统阶跃响应的超调率(OS%)、上升时间(tr)、稳定时间(ts)和稳态误差(Ess)等时域参数,使ZLG方法的目标函数值最小。将所提出的PSO-BELBIC控制器的时域参数性能与PSO-PID、IKA-PID和SCA-PID控制器进行了比较。仿真结果表明,所提出的无模型PSO-BELBIC控制器能够提供最佳的目标函数极小值。与其他控制器相比,所提出的PSO-BELBIC控制器在降低超调率、稳态误差和稳定时间方面具有优越的性能。然而,通过研究新的Si和ES的BELBIC控制器的上升时间参数,该控制器仍有改进的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Implementation of Brain Emotional Learning Based Intelligent Controller for AVR System
In this paper, an intelligent controller based on brain emotional learning called BELBIC is applied and optimized by Particle Swarm optimization algorithm. PSO algorithm is used to tuned twelve BELBIC controller parameters in order to improve the time domain parameters such as overshoot percentage (OS%), rise time (tr), settling time (ts) and steady state error (Ess) of the step response for an AVR system in order to minimize value of objective function based on ZLG method. This proposed PSO-BELBIC controller time domain parameters performance is compared with the PSO-PID, IKA-PID and SCA-PID controller. From the simulation, the proposed model free PSO-BELBIC controller was confirm able to provide the best objective function minimization value. This proposed PSO-BELBIC controller also able to provide superior performance to reduce overshoot percentage, steady state error and settling time compared to others controller. However, this proposed controller still have a space to improve its rising time parameter by investigate new formulation of Si and ES for BELBIC controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信