基于临界核的欧氏同伦骨架

M. Couprie, A. Saúde, Gilles Bertrand
{"title":"基于临界核的欧氏同伦骨架","authors":"M. Couprie, A. Saúde, Gilles Bertrand","doi":"10.1109/SIBGRAPI.2006.16","DOIUrl":null,"url":null,"abstract":"Critical kernels constitute a general framework settled in the category of abstract complexes for the study of parallel thinning in any dimension. It allows to easily design parallel thinning algorithms which produce new types of skeletons, with specific geometrical properties, while guaranteeing their topological soundness. In this paper, we demonstrate that it is possible to define a skeleton based on the Euclidean distance, rather than on the common discrete distances, in the context of critical kernels. We provide the necessary definitions as well as an efficient algorithm to compute this skeleton","PeriodicalId":253871,"journal":{"name":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Euclidean homotopic skeleton based on critical kernels\",\"authors\":\"M. Couprie, A. Saúde, Gilles Bertrand\",\"doi\":\"10.1109/SIBGRAPI.2006.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Critical kernels constitute a general framework settled in the category of abstract complexes for the study of parallel thinning in any dimension. It allows to easily design parallel thinning algorithms which produce new types of skeletons, with specific geometrical properties, while guaranteeing their topological soundness. In this paper, we demonstrate that it is possible to define a skeleton based on the Euclidean distance, rather than on the common discrete distances, in the context of critical kernels. We provide the necessary definitions as well as an efficient algorithm to compute this skeleton\",\"PeriodicalId\":253871,\"journal\":{\"name\":\"2006 19th Brazilian Symposium on Computer Graphics and Image Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 19th Brazilian Symposium on Computer Graphics and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2006.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2006.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

临界核构成了抽象复合体范畴内的一般框架,用于研究任意维度的平行稀疏问题。它可以很容易地设计并行细化算法,产生具有特定几何属性的新型骨架,同时保证其拓扑稳健性。在本文中,我们证明了在临界核的情况下,基于欧几里得距离而不是常见的离散距离来定义骨架是可能的。我们提供了必要的定义以及计算该框架的有效算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean homotopic skeleton based on critical kernels
Critical kernels constitute a general framework settled in the category of abstract complexes for the study of parallel thinning in any dimension. It allows to easily design parallel thinning algorithms which produce new types of skeletons, with specific geometrical properties, while guaranteeing their topological soundness. In this paper, we demonstrate that it is possible to define a skeleton based on the Euclidean distance, rather than on the common discrete distances, in the context of critical kernels. We provide the necessary definitions as well as an efficient algorithm to compute this skeleton
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信