{"title":"一类新的二阶Sturm-Liouville系统边值耦合","authors":"John E. Geist","doi":"10.6028/jres.075b.006","DOIUrl":null,"url":null,"abstract":"A natural genera lization of the familiar second order Sturm-Liouville syste m is presented. T his gene rali za tion co ns is ts of considering a number of differe ntia l equ ations defined on difTerent inte rvals, instead of ju st one equation on one inte rva l. The self-adjoint characte r of the diffe rential equations is re ta ined in th e gene rali za tion, but th e boundary conditions a re re laxed conside ra bl y. The mos t gene ral boundary cond itions which can be accommod ated by thi s so rt of gene ralization of S turm-Liouvi ll e theory a re di scussed. Th e exis te nce of e igenva lues is proved , and a gene ra lized orthogonalit y and a weak e igenfun ction expansion theorem are de rived.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1971-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new type of boundary value coupling for second order Sturm-Liouville systems\",\"authors\":\"John E. Geist\",\"doi\":\"10.6028/jres.075b.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A natural genera lization of the familiar second order Sturm-Liouville syste m is presented. T his gene rali za tion co ns is ts of considering a number of differe ntia l equ ations defined on difTerent inte rvals, instead of ju st one equation on one inte rva l. The self-adjoint characte r of the diffe rential equations is re ta ined in th e gene rali za tion, but th e boundary conditions a re re laxed conside ra bl y. The mos t gene ral boundary cond itions which can be accommod ated by thi s so rt of gene ralization of S turm-Liouvi ll e theory a re di scussed. Th e exis te nce of e igenva lues is proved , and a gene ra lized orthogonalit y and a weak e igenfun ction expansion theorem are de rived.\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1971-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.075b.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.075b.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
给出了熟悉的二阶Sturm-Liouville系统m的自然推广。T他的基因rali咱公司决心ns的ts的考虑均ntia l装备的现代化道路上定义difTerent强度rvals,而不是当作自己人一个方程在一个强度rva l。产生实用的成立与自伴的r方程再保险ta独立董事在th e基因rali咱,但再保险再保险th e边界条件宽松,标本ra提单y。mos T基因、边界条件数过渡可以accommod给出通过thi s rt基因ralization s turm-Liouvi ll e理论条件。证明了遗传值的存在性,给出了一个基因化正交定理和一个弱遗传函数展开定理。
A new type of boundary value coupling for second order Sturm-Liouville systems
A natural genera lization of the familiar second order Sturm-Liouville syste m is presented. T his gene rali za tion co ns is ts of considering a number of differe ntia l equ ations defined on difTerent inte rvals, instead of ju st one equation on one inte rva l. The self-adjoint characte r of the diffe rential equations is re ta ined in th e gene rali za tion, but th e boundary conditions a re re laxed conside ra bl y. The mos t gene ral boundary cond itions which can be accommod ated by thi s so rt of gene ralization of S turm-Liouvi ll e theory a re di scussed. Th e exis te nce of e igenva lues is proved , and a gene ra lized orthogonalit y and a weak e igenfun ction expansion theorem are de rived.