基于机器学习的PCB供电网络参数设计

Morten Schierholz, I. Erdin, J. Balachandran, Cheng Yang, C. Schuster
{"title":"基于机器学习的PCB供电网络参数设计","authors":"Morten Schierholz, I. Erdin, J. Balachandran, Cheng Yang, C. Schuster","doi":"10.1109/SPI54345.2022.9874946","DOIUrl":null,"url":null,"abstract":"In this contribution, a methodology using ANN techniques is presented for the analysis and design of power delivery network (PDN) in printed circuit board (PCB) design. The trained artificial neural networks (ANNs) are applied to answer relevant PDN design questions such as PCB resonance frequency and target impedance (TI) violations. Based on PCB geometry and material variations a PDN design space is defined. To train the ANNs, inside the design space a sparse sampling with 10000 physics-based (PB) simulations is performed. The S-parameter database is created using physics based via models which are validated by a commercial full-wave finite element method (FEM) solver in the frequency spectrum of 1MHz to 1GHz. The S-parameters are available in the SI/PI-Database. The flexibility of the unterminated S-parameters is demonstrated by a post processing termination using decoupling capacitor (decap) distributions. Limitations of the data generation are discussed with respect to computational resources and disk space.","PeriodicalId":285253,"journal":{"name":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","volume":" 45","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parametric S-Parameters for PCB based Power Delivery Network Design Using Machine Learning\",\"authors\":\"Morten Schierholz, I. Erdin, J. Balachandran, Cheng Yang, C. Schuster\",\"doi\":\"10.1109/SPI54345.2022.9874946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, a methodology using ANN techniques is presented for the analysis and design of power delivery network (PDN) in printed circuit board (PCB) design. The trained artificial neural networks (ANNs) are applied to answer relevant PDN design questions such as PCB resonance frequency and target impedance (TI) violations. Based on PCB geometry and material variations a PDN design space is defined. To train the ANNs, inside the design space a sparse sampling with 10000 physics-based (PB) simulations is performed. The S-parameter database is created using physics based via models which are validated by a commercial full-wave finite element method (FEM) solver in the frequency spectrum of 1MHz to 1GHz. The S-parameters are available in the SI/PI-Database. The flexibility of the unterminated S-parameters is demonstrated by a post processing termination using decoupling capacitor (decap) distributions. Limitations of the data generation are discussed with respect to computational resources and disk space.\",\"PeriodicalId\":285253,\"journal\":{\"name\":\"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)\",\"volume\":\" 45\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI54345.2022.9874946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI54345.2022.9874946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这篇贡献中,提出了一种使用人工神经网络技术分析和设计印刷电路板(PCB)设计中的电力输送网络(PDN)的方法。将训练好的人工神经网络(ann)用于解决PCB谐振频率和目标阻抗(TI)违规等相关PDN设计问题。根据PCB的几何形状和材料变化,定义了PDN设计空间。为了训练人工神经网络,在设计空间内进行了10000次基于物理(PB)模拟的稀疏采样。s参数数据库是基于物理模型创建的,并通过商用全波有限元法(FEM)求解器在1MHz至1GHz频谱范围内进行验证。s参数可在SI/ pi数据库中获得。采用去耦电容(decap)分布的后处理终端证明了非端接s参数的灵活性。在计算资源和磁盘空间方面讨论了数据生成的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric S-Parameters for PCB based Power Delivery Network Design Using Machine Learning
In this contribution, a methodology using ANN techniques is presented for the analysis and design of power delivery network (PDN) in printed circuit board (PCB) design. The trained artificial neural networks (ANNs) are applied to answer relevant PDN design questions such as PCB resonance frequency and target impedance (TI) violations. Based on PCB geometry and material variations a PDN design space is defined. To train the ANNs, inside the design space a sparse sampling with 10000 physics-based (PB) simulations is performed. The S-parameter database is created using physics based via models which are validated by a commercial full-wave finite element method (FEM) solver in the frequency spectrum of 1MHz to 1GHz. The S-parameters are available in the SI/PI-Database. The flexibility of the unterminated S-parameters is demonstrated by a post processing termination using decoupling capacitor (decap) distributions. Limitations of the data generation are discussed with respect to computational resources and disk space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信