A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. Theelen, M. Mousavi, A. Moonen, M. Bekooij
{"title":"同步数据流图的吞吐量分析","authors":"A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. Theelen, M. Mousavi, A. Moonen, M. Bekooij","doi":"10.1109/ACSD.2006.33","DOIUrl":null,"url":null,"abstract":"Synchronous data flow graphs (SDFGs) are a useful tool for modeling and analyzing embedded data flow applications, both in a single processor and a multiprocessing context or for application mapping on platforms. Throughput analysis of these SDFGs is an important step for verifying throughput requirements of concurrent real-time applications, for instance within design-space exploration activities. Analysis of SDFGs can be hard, since the worst-case complexity of analysis algorithms is often high. This is also true for throughput analysis. In particular, many algorithms involve a conversion to another kind of data flow graph, the size of which can be exponentially larger than the size of the original graph. In this paper, we present a method for throughput analysis of SDFGs, based on explicit state-space exploration and we show that the method, despite its worst-case complexity, works well in practice, while existing methods often fail. We demonstrate this by comparing the method with state-of-the-art cycle mean computation algorithms. Moreover, since the state-space exploration method is essentially the same as simulation of the graph, the results of this paper can be easily obtained as a byproduct in existing simulation tools","PeriodicalId":282333,"journal":{"name":"Sixth International Conference on Application of Concurrency to System Design (ACSD'06)","volume":"33 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"322","resultStr":"{\"title\":\"Throughput Analysis of Synchronous Data Flow Graphs\",\"authors\":\"A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. Theelen, M. Mousavi, A. Moonen, M. Bekooij\",\"doi\":\"10.1109/ACSD.2006.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronous data flow graphs (SDFGs) are a useful tool for modeling and analyzing embedded data flow applications, both in a single processor and a multiprocessing context or for application mapping on platforms. Throughput analysis of these SDFGs is an important step for verifying throughput requirements of concurrent real-time applications, for instance within design-space exploration activities. Analysis of SDFGs can be hard, since the worst-case complexity of analysis algorithms is often high. This is also true for throughput analysis. In particular, many algorithms involve a conversion to another kind of data flow graph, the size of which can be exponentially larger than the size of the original graph. In this paper, we present a method for throughput analysis of SDFGs, based on explicit state-space exploration and we show that the method, despite its worst-case complexity, works well in practice, while existing methods often fail. We demonstrate this by comparing the method with state-of-the-art cycle mean computation algorithms. Moreover, since the state-space exploration method is essentially the same as simulation of the graph, the results of this paper can be easily obtained as a byproduct in existing simulation tools\",\"PeriodicalId\":282333,\"journal\":{\"name\":\"Sixth International Conference on Application of Concurrency to System Design (ACSD'06)\",\"volume\":\"33 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"322\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Application of Concurrency to System Design (ACSD'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSD.2006.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Application of Concurrency to System Design (ACSD'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Throughput Analysis of Synchronous Data Flow Graphs
Synchronous data flow graphs (SDFGs) are a useful tool for modeling and analyzing embedded data flow applications, both in a single processor and a multiprocessing context or for application mapping on platforms. Throughput analysis of these SDFGs is an important step for verifying throughput requirements of concurrent real-time applications, for instance within design-space exploration activities. Analysis of SDFGs can be hard, since the worst-case complexity of analysis algorithms is often high. This is also true for throughput analysis. In particular, many algorithms involve a conversion to another kind of data flow graph, the size of which can be exponentially larger than the size of the original graph. In this paper, we present a method for throughput analysis of SDFGs, based on explicit state-space exploration and we show that the method, despite its worst-case complexity, works well in practice, while existing methods often fail. We demonstrate this by comparing the method with state-of-the-art cycle mean computation algorithms. Moreover, since the state-space exploration method is essentially the same as simulation of the graph, the results of this paper can be easily obtained as a byproduct in existing simulation tools