倒立摆混合控制器

Y. Singh, M. Bhatotia, R. Mitra
{"title":"倒立摆混合控制器","authors":"Y. Singh, M. Bhatotia, R. Mitra","doi":"10.1109/APCET.2012.6302042","DOIUrl":null,"url":null,"abstract":"Inverted pendulum system is a nonlinear multivariable system which is inherently unstable. It requires designing of a hybrid controller which can adapt in different disturbance conditions and work appreciably well when compared to conventional controllers. In this paper, a hybrid controller for inverted pendulum is designed. Initially Fuzzy and LQR controllers for inverted pendulum are designed, then data are collected from these controllers, which then are used to train Adaptive neuro-fuzzy inference system (ANFIS). This hybrid controller has advantages of Fuzzy, LQR controllers and of neural networks; so it gives better performance.","PeriodicalId":184844,"journal":{"name":"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)","volume":"60 33","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid controller for inverted pendulum\",\"authors\":\"Y. Singh, M. Bhatotia, R. Mitra\",\"doi\":\"10.1109/APCET.2012.6302042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverted pendulum system is a nonlinear multivariable system which is inherently unstable. It requires designing of a hybrid controller which can adapt in different disturbance conditions and work appreciably well when compared to conventional controllers. In this paper, a hybrid controller for inverted pendulum is designed. Initially Fuzzy and LQR controllers for inverted pendulum are designed, then data are collected from these controllers, which then are used to train Adaptive neuro-fuzzy inference system (ANFIS). This hybrid controller has advantages of Fuzzy, LQR controllers and of neural networks; so it gives better performance.\",\"PeriodicalId\":184844,\"journal\":{\"name\":\"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)\",\"volume\":\"60 33\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCET.2012.6302042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCET.2012.6302042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

倒立摆系统是一个具有固有不稳定性的非线性多变量系统。这就要求设计一种混合控制器,使其能够适应不同的干扰条件,并且与常规控制器相比工作性能要好。本文设计了一种倒立摆混合式控制器。首先设计了倒立摆的模糊控制器和LQR控制器,然后从控制器中采集数据,用于训练自适应神经模糊推理系统(ANFIS)。该混合控制器具有模糊控制器、LQR控制器和神经网络的优点;所以它能提供更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid controller for inverted pendulum
Inverted pendulum system is a nonlinear multivariable system which is inherently unstable. It requires designing of a hybrid controller which can adapt in different disturbance conditions and work appreciably well when compared to conventional controllers. In this paper, a hybrid controller for inverted pendulum is designed. Initially Fuzzy and LQR controllers for inverted pendulum are designed, then data are collected from these controllers, which then are used to train Adaptive neuro-fuzzy inference system (ANFIS). This hybrid controller has advantages of Fuzzy, LQR controllers and of neural networks; so it gives better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信