采用隧道场效应管的不同SRAM单元拓扑的性能分析

S. Strangio, P. Palestri, D. Esseni, L. Selmi, F. Crupi
{"title":"采用隧道场效应管的不同SRAM单元拓扑的性能分析","authors":"S. Strangio, P. Palestri, D. Esseni, L. Selmi, F. Crupi","doi":"10.1109/DRC.2014.6872338","DOIUrl":null,"url":null,"abstract":"Tunnel-FET is one of the most promising candidates to replace CMOS in low-power (LP) applications [1], featuring a sub-threshold slope (SS) below the 60mV/dec limit of MOSFET. However, the intrinsic asymmetry of TFETs, makes them good transistors only for a current flowing from drain to source and prevents their use as access transistors (AT) in the 6T SRAM cell. In this paper, we use TCAD mixed device-circuit simulations [2] of symmetric 6T SRAM cells, implemented with the n-type SiGe/Si TFET and p-type strained-Si TFET designed in [3] (Fig. 1) for VDD as low as 0.2V. The gate metal work-functions were set to match the off-current for LP applications (10pA/μm). For comparison purposes, both N- and P-MOS were also designed with the same double-gate SOI structure. The ID-VGS curves of the TFETs (Fig.2) show that the sub-60mV/decade region is confined to ultra low voltage regime (below 0.25 V) and that ambipolarity is very limited in these devices. ID(VDS) in Fig.3 show the lower output conductance of the TFETs w.r.t. to MOS.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"1 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance analysis of different SRAM cell topologies employing tunnel-FETs\",\"authors\":\"S. Strangio, P. Palestri, D. Esseni, L. Selmi, F. Crupi\",\"doi\":\"10.1109/DRC.2014.6872338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunnel-FET is one of the most promising candidates to replace CMOS in low-power (LP) applications [1], featuring a sub-threshold slope (SS) below the 60mV/dec limit of MOSFET. However, the intrinsic asymmetry of TFETs, makes them good transistors only for a current flowing from drain to source and prevents their use as access transistors (AT) in the 6T SRAM cell. In this paper, we use TCAD mixed device-circuit simulations [2] of symmetric 6T SRAM cells, implemented with the n-type SiGe/Si TFET and p-type strained-Si TFET designed in [3] (Fig. 1) for VDD as low as 0.2V. The gate metal work-functions were set to match the off-current for LP applications (10pA/μm). For comparison purposes, both N- and P-MOS were also designed with the same double-gate SOI structure. The ID-VGS curves of the TFETs (Fig.2) show that the sub-60mV/decade region is confined to ultra low voltage regime (below 0.25 V) and that ambipolarity is very limited in these devices. ID(VDS) in Fig.3 show the lower output conductance of the TFETs w.r.t. to MOS.\",\"PeriodicalId\":293780,\"journal\":{\"name\":\"72nd Device Research Conference\",\"volume\":\"1 24\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"72nd Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2014.6872338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

隧道fet是低功耗(LP)应用中最有希望取代CMOS的候选器件之一[1],其亚阈值斜率(SS)低于MOSFET的60mV/dec极限。然而,tfet固有的不对称性使得它们仅适用于从漏极流到源极的电流,并且阻碍了它们在6T SRAM单元中用作存取晶体管(AT)。在本文中,我们使用TCAD对对称6T SRAM单元进行混合器件电路仿真[2],使用[3]中设计的n型SiGe/Si TFET和p型应变Si TFET(图1)实现VDD低至0.2V。栅极金属工作功能设置为匹配LP应用的断开电流(10pA/μm)。为了比较,N- mos和P-MOS也设计了相同的双栅SOI结构。tfet的ID-VGS曲线(图2)表明,60mv /十进以下区域被限制在超低电压区(低于0.25 V),双极性在这些器件中非常有限。图3中的ID(VDS)显示了与MOS作逆变的tfet的较低输出电导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of different SRAM cell topologies employing tunnel-FETs
Tunnel-FET is one of the most promising candidates to replace CMOS in low-power (LP) applications [1], featuring a sub-threshold slope (SS) below the 60mV/dec limit of MOSFET. However, the intrinsic asymmetry of TFETs, makes them good transistors only for a current flowing from drain to source and prevents their use as access transistors (AT) in the 6T SRAM cell. In this paper, we use TCAD mixed device-circuit simulations [2] of symmetric 6T SRAM cells, implemented with the n-type SiGe/Si TFET and p-type strained-Si TFET designed in [3] (Fig. 1) for VDD as low as 0.2V. The gate metal work-functions were set to match the off-current for LP applications (10pA/μm). For comparison purposes, both N- and P-MOS were also designed with the same double-gate SOI structure. The ID-VGS curves of the TFETs (Fig.2) show that the sub-60mV/decade region is confined to ultra low voltage regime (below 0.25 V) and that ambipolarity is very limited in these devices. ID(VDS) in Fig.3 show the lower output conductance of the TFETs w.r.t. to MOS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信