基于分数阶微分和调制传递函数的彩色图像锐化

C. Tseng, Su-Ling Lee
{"title":"基于分数阶微分和调制传递函数的彩色图像锐化","authors":"C. Tseng, Su-Ling Lee","doi":"10.1109/ISCE.2013.6570184","DOIUrl":null,"url":null,"abstract":"In this paper, a color image sharpening algorithm is presented by using YCbCr color space representation and fractional differentiation operator. Because the quality of sharpened color image depends on the order of fractional differentiation, the modulation transfer function (MTF) in the human visual system (HVS) is employed to determine the best fractional order of differentiation. Various color images are used to show the effectiveness of the proposed color image sharpening method.","PeriodicalId":442380,"journal":{"name":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"49 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Color image sharpening based on fractional differentiation and modulation transfer function\",\"authors\":\"C. Tseng, Su-Ling Lee\",\"doi\":\"10.1109/ISCE.2013.6570184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a color image sharpening algorithm is presented by using YCbCr color space representation and fractional differentiation operator. Because the quality of sharpened color image depends on the order of fractional differentiation, the modulation transfer function (MTF) in the human visual system (HVS) is employed to determine the best fractional order of differentiation. Various color images are used to show the effectiveness of the proposed color image sharpening method.\",\"PeriodicalId\":442380,\"journal\":{\"name\":\"2013 IEEE International Symposium on Consumer Electronics (ISCE)\",\"volume\":\"49 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Consumer Electronics (ISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCE.2013.6570184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2013.6570184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于YCbCr色彩空间表示和分数阶微分算子的彩色图像锐化算法。由于锐化彩色图像的质量取决于分数阶微分的阶数,因此利用人眼视觉系统中的调制传递函数(MTF)来确定最佳分数阶微分。利用不同的彩色图像来证明所提出的彩色图像锐化方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color image sharpening based on fractional differentiation and modulation transfer function
In this paper, a color image sharpening algorithm is presented by using YCbCr color space representation and fractional differentiation operator. Because the quality of sharpened color image depends on the order of fractional differentiation, the modulation transfer function (MTF) in the human visual system (HVS) is employed to determine the best fractional order of differentiation. Various color images are used to show the effectiveness of the proposed color image sharpening method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信