数字微流体模块化连接接口

SPIE MOEMS-MEMS Pub Date : 2008-02-07 DOI:10.1117/12.765652
Hanping Yang, S. Fan, W. Hsu
{"title":"数字微流体模块化连接接口","authors":"Hanping Yang, S. Fan, W. Hsu","doi":"10.1117/12.765652","DOIUrl":null,"url":null,"abstract":"Here, interconnection technique to link digital microfluidic chips is proposed. Three kinds of digital microfluidic modules with connecting interface, including flexible module and two types of connector modules, are designed and fabricated. Since these modules are fabricated on a compliant polymer-based substrate (ITO PET), chip-to-chip droplet transportation even at different planes can be achieved by the proposed technique. A low-temperature fabrication process is developed for the polymer substrates, where the SU-8 acts as the insulator. Droplet transportation through electrowetting on curved surface is confirmed by testing on the bended flexible modules with different curvatures from 0 to 0.06 mm-1 at around 70 VAC. Then the droplet transportations between flexible and connector modules are investigated. It is found that the gap size between two modules and the sidewall profiles at interface affect the droplet transportation directly. For the gap size around 50μm with a smooth perpendicular sidewall profile, 80 VAC is shown to actuate droplet of 1.5 μl, 2.5 μl, or 3.5 μl to cross over the interface successfully.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"29 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connecting interface for modularization of digital microfluidics\",\"authors\":\"Hanping Yang, S. Fan, W. Hsu\",\"doi\":\"10.1117/12.765652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, interconnection technique to link digital microfluidic chips is proposed. Three kinds of digital microfluidic modules with connecting interface, including flexible module and two types of connector modules, are designed and fabricated. Since these modules are fabricated on a compliant polymer-based substrate (ITO PET), chip-to-chip droplet transportation even at different planes can be achieved by the proposed technique. A low-temperature fabrication process is developed for the polymer substrates, where the SU-8 acts as the insulator. Droplet transportation through electrowetting on curved surface is confirmed by testing on the bended flexible modules with different curvatures from 0 to 0.06 mm-1 at around 70 VAC. Then the droplet transportations between flexible and connector modules are investigated. It is found that the gap size between two modules and the sidewall profiles at interface affect the droplet transportation directly. For the gap size around 50μm with a smooth perpendicular sidewall profile, 80 VAC is shown to actuate droplet of 1.5 μl, 2.5 μl, or 3.5 μl to cross over the interface successfully.\",\"PeriodicalId\":130723,\"journal\":{\"name\":\"SPIE MOEMS-MEMS\",\"volume\":\"29 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE MOEMS-MEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.765652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE MOEMS-MEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.765652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种连接数字微流控芯片的互连技术。设计并制作了三种带连接接口的数字微流控模块,包括柔性模块和两种连接器模块。由于这些模块是在符合要求的聚合物基基板(ITO PET)上制造的,因此通过所提出的技术,即使在不同的平面上,也可以实现芯片到芯片的液滴传输。开发了用于聚合物衬底的低温制造工艺,其中SU-8充当绝缘体。在70 VAC左右的条件下,对曲率为0 ~ 0.06 mm-1的弯曲柔性模块进行测试,证实了液滴在弯曲表面的电润湿传输。然后研究了柔性模组和连接器模组之间的液滴输运。研究发现,两个模块之间的间隙大小和界面处的侧壁轮廓直接影响液滴的输运。当间隙尺寸为50μm左右且侧壁轮廓光滑时,80vac可使1.5 μl、2.5 μl或3.5 μl的液滴顺利通过界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connecting interface for modularization of digital microfluidics
Here, interconnection technique to link digital microfluidic chips is proposed. Three kinds of digital microfluidic modules with connecting interface, including flexible module and two types of connector modules, are designed and fabricated. Since these modules are fabricated on a compliant polymer-based substrate (ITO PET), chip-to-chip droplet transportation even at different planes can be achieved by the proposed technique. A low-temperature fabrication process is developed for the polymer substrates, where the SU-8 acts as the insulator. Droplet transportation through electrowetting on curved surface is confirmed by testing on the bended flexible modules with different curvatures from 0 to 0.06 mm-1 at around 70 VAC. Then the droplet transportations between flexible and connector modules are investigated. It is found that the gap size between two modules and the sidewall profiles at interface affect the droplet transportation directly. For the gap size around 50μm with a smooth perpendicular sidewall profile, 80 VAC is shown to actuate droplet of 1.5 μl, 2.5 μl, or 3.5 μl to cross over the interface successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信