{"title":"提倡腔内放射治疗脑动静脉畸形","authors":"N. Hirsh, A. Arthur, S. Golan","doi":"10.5772/intechopen.89662","DOIUrl":null,"url":null,"abstract":"In 2014, ARUBA (a randomized trial on cerebral Arteriovenous Malformation – AVM) found patients treated using prevalent interventional strategies are three times more likely to suffer a stroke/die compared with those treated conserva-tively (blood pressure reduction). Subsequent controversy led the European societies dealing with AVM to organize a consensus conference. Among the statements made was: “There may be indications for treating patients with higher Spetzler-Martin (SM) grades, based on a case-to-case consensus decision of the experienced team”. Thus, a clear accord emerges. There is a lacuna/weakness of interventional modalities when addressing high SM grade AVMs. This lack of a clear treatment choice originated our review. We attempt to identify the advantages and challenges of each present treatment/evaluation modality and highlight core requirements for future strategies. We conclude that existing modalities provide substantial recent improvements, yet the core challenge persists. Finally, we advocate testing a novel modality – intraluminal radiotherapy (active implants) by exploiting the “candy wrapper” or edge effect. If proven effective, this approach could offer gradual vessel occlusion with minimal abrupt hemodynamic changes known to induce hemorrhage, the lowest recurring session number (reduced costs), minimally invasive attributes and very low radiation (dose/dose rate) kinetics minimizing potential Adverse Radiation Effects (AREs).","PeriodicalId":260013,"journal":{"name":"Vascular Malformations of the Central Nervous System","volume":"84 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advocating Intraluminal Radiation Therapy in Cerebral Arteriovenous Malformation Treatment\",\"authors\":\"N. Hirsh, A. Arthur, S. Golan\",\"doi\":\"10.5772/intechopen.89662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2014, ARUBA (a randomized trial on cerebral Arteriovenous Malformation – AVM) found patients treated using prevalent interventional strategies are three times more likely to suffer a stroke/die compared with those treated conserva-tively (blood pressure reduction). Subsequent controversy led the European societies dealing with AVM to organize a consensus conference. Among the statements made was: “There may be indications for treating patients with higher Spetzler-Martin (SM) grades, based on a case-to-case consensus decision of the experienced team”. Thus, a clear accord emerges. There is a lacuna/weakness of interventional modalities when addressing high SM grade AVMs. This lack of a clear treatment choice originated our review. We attempt to identify the advantages and challenges of each present treatment/evaluation modality and highlight core requirements for future strategies. We conclude that existing modalities provide substantial recent improvements, yet the core challenge persists. Finally, we advocate testing a novel modality – intraluminal radiotherapy (active implants) by exploiting the “candy wrapper” or edge effect. If proven effective, this approach could offer gradual vessel occlusion with minimal abrupt hemodynamic changes known to induce hemorrhage, the lowest recurring session number (reduced costs), minimally invasive attributes and very low radiation (dose/dose rate) kinetics minimizing potential Adverse Radiation Effects (AREs).\",\"PeriodicalId\":260013,\"journal\":{\"name\":\"Vascular Malformations of the Central Nervous System\",\"volume\":\"84 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vascular Malformations of the Central Nervous System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular Malformations of the Central Nervous System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advocating Intraluminal Radiation Therapy in Cerebral Arteriovenous Malformation Treatment
In 2014, ARUBA (a randomized trial on cerebral Arteriovenous Malformation – AVM) found patients treated using prevalent interventional strategies are three times more likely to suffer a stroke/die compared with those treated conserva-tively (blood pressure reduction). Subsequent controversy led the European societies dealing with AVM to organize a consensus conference. Among the statements made was: “There may be indications for treating patients with higher Spetzler-Martin (SM) grades, based on a case-to-case consensus decision of the experienced team”. Thus, a clear accord emerges. There is a lacuna/weakness of interventional modalities when addressing high SM grade AVMs. This lack of a clear treatment choice originated our review. We attempt to identify the advantages and challenges of each present treatment/evaluation modality and highlight core requirements for future strategies. We conclude that existing modalities provide substantial recent improvements, yet the core challenge persists. Finally, we advocate testing a novel modality – intraluminal radiotherapy (active implants) by exploiting the “candy wrapper” or edge effect. If proven effective, this approach could offer gradual vessel occlusion with minimal abrupt hemodynamic changes known to induce hemorrhage, the lowest recurring session number (reduced costs), minimally invasive attributes and very low radiation (dose/dose rate) kinetics minimizing potential Adverse Radiation Effects (AREs).