基于细胞神经网络的超低噪声符号数字算法

Y. Ibrahim, G. Jullien, W. Miller
{"title":"基于细胞神经网络的超低噪声符号数字算法","authors":"Y. Ibrahim, G. Jullien, W. Miller","doi":"10.1109/IWSOC.2004.1319866","DOIUrl":null,"url":null,"abstract":"This paper addresses mixed-signal applications where the presence of digital switching noise is a major problem; for example, digital circuitry adjacent to sensitive bio-sensors in an SoC device. This paper describes a method for building ultra low-noise signed-digit arithmetic circuits using analog cellular neural networks, essentially implementing asynchronous digital logic with analog circuits. Each node in our asynchronous architectures uses controlled current sources driving into capacitors; providing both low current and voltage time derivatives (di/dt and dv/dt) and, as a result, reducing both instantaneous and average system and cross-talk noise. In this paper, we present the architecture of a signed-digit radix-2 adder with symmetrical digit set {-1,0,1}. The adder uses a new class of CNNs that has three stable states to match the three values of the digit set. The adder not only has all the known advantages of SD addition, but also greatly reduces switching noise. We also describe a 32x32-digit multiplier based on this technique. In a simulated comparison with CMOS digital counterparts in a 0.35/spl mu/m CMOS technology, the peak system noise is 60-70dB lower for the CNN circuits.","PeriodicalId":306688,"journal":{"name":"4th IEEE International Workshop on System-on-Chip for Real-Time Applications","volume":"9 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultra low noise signed digit arithmetic using cellular neural networks\",\"authors\":\"Y. Ibrahim, G. Jullien, W. Miller\",\"doi\":\"10.1109/IWSOC.2004.1319866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses mixed-signal applications where the presence of digital switching noise is a major problem; for example, digital circuitry adjacent to sensitive bio-sensors in an SoC device. This paper describes a method for building ultra low-noise signed-digit arithmetic circuits using analog cellular neural networks, essentially implementing asynchronous digital logic with analog circuits. Each node in our asynchronous architectures uses controlled current sources driving into capacitors; providing both low current and voltage time derivatives (di/dt and dv/dt) and, as a result, reducing both instantaneous and average system and cross-talk noise. In this paper, we present the architecture of a signed-digit radix-2 adder with symmetrical digit set {-1,0,1}. The adder uses a new class of CNNs that has three stable states to match the three values of the digit set. The adder not only has all the known advantages of SD addition, but also greatly reduces switching noise. We also describe a 32x32-digit multiplier based on this technique. In a simulated comparison with CMOS digital counterparts in a 0.35/spl mu/m CMOS technology, the peak system noise is 60-70dB lower for the CNN circuits.\",\"PeriodicalId\":306688,\"journal\":{\"name\":\"4th IEEE International Workshop on System-on-Chip for Real-Time Applications\",\"volume\":\"9 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th IEEE International Workshop on System-on-Chip for Real-Time Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSOC.2004.1319866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE International Workshop on System-on-Chip for Real-Time Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSOC.2004.1319866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了混合信号应用,其中存在数字开关噪声是一个主要问题;例如,在SoC器件中,与敏感生物传感器相邻的数字电路。本文描述了一种利用模拟细胞神经网络构建超低噪声符号数算术电路的方法,本质上是用模拟电路实现异步数字逻辑。我们的异步架构中的每个节点都使用驱动电容器的受控电流源;提供低电流和电压时间导数(di/dt和dv/dt),从而降低瞬时和平均系统和串扰噪声。本文给出了具有对称数字集{-1,0,1}的符号数基数-2加法器的结构。加法器使用一类新的cnn,它有三个稳定的状态来匹配数字集的三个值。该加法器不仅具有SD加法的所有已知优点,而且还大大降低了开关噪声。我们还描述了基于这种技术的32x32位乘法器。在0.35/spl mu/m CMOS技术下与CMOS数字电路进行仿真比较,CNN电路的峰值系统噪声降低了60-70dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra low noise signed digit arithmetic using cellular neural networks
This paper addresses mixed-signal applications where the presence of digital switching noise is a major problem; for example, digital circuitry adjacent to sensitive bio-sensors in an SoC device. This paper describes a method for building ultra low-noise signed-digit arithmetic circuits using analog cellular neural networks, essentially implementing asynchronous digital logic with analog circuits. Each node in our asynchronous architectures uses controlled current sources driving into capacitors; providing both low current and voltage time derivatives (di/dt and dv/dt) and, as a result, reducing both instantaneous and average system and cross-talk noise. In this paper, we present the architecture of a signed-digit radix-2 adder with symmetrical digit set {-1,0,1}. The adder uses a new class of CNNs that has three stable states to match the three values of the digit set. The adder not only has all the known advantages of SD addition, but also greatly reduces switching noise. We also describe a 32x32-digit multiplier based on this technique. In a simulated comparison with CMOS digital counterparts in a 0.35/spl mu/m CMOS technology, the peak system noise is 60-70dB lower for the CNN circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信