水下目标分类多类分类器的比较研究

Babu Ferose, Ta, Pradeepa R
{"title":"水下目标分类多类分类器的比较研究","authors":"Babu Ferose, Ta, Pradeepa R","doi":"10.1109/ICACC.2013.85","DOIUrl":null,"url":null,"abstract":"Underwater target classification is a complex task, due to the difficulty in identifying non-overlapping and stable feature set. Moreover, choosing the discriminating algorithm for classification using these features is highly demanding. It is required to choose the right approach and the technique, or the best combinations of techniques from a large set of options available in the literature for the specific problem. The paper addresses this issue by comparing different approaches and techniques for multiclass classification using a particular feature derived from the real data sets. A number of performance metrices are used to compare the performance.","PeriodicalId":109537,"journal":{"name":"2013 Third International Conference on Advances in Computing and Communications","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Multiclass Classifiers for Underwater Target Classification\",\"authors\":\"Babu Ferose, Ta, Pradeepa R\",\"doi\":\"10.1109/ICACC.2013.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater target classification is a complex task, due to the difficulty in identifying non-overlapping and stable feature set. Moreover, choosing the discriminating algorithm for classification using these features is highly demanding. It is required to choose the right approach and the technique, or the best combinations of techniques from a large set of options available in the literature for the specific problem. The paper addresses this issue by comparing different approaches and techniques for multiclass classification using a particular feature derived from the real data sets. A number of performance metrices are used to compare the performance.\",\"PeriodicalId\":109537,\"journal\":{\"name\":\"2013 Third International Conference on Advances in Computing and Communications\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Third International Conference on Advances in Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACC.2013.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third International Conference on Advances in Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACC.2013.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水下目标分类是一项复杂的任务,难以识别不重叠且稳定的特征集。而且,利用这些特征选择判别算法进行分类的要求很高。需要选择正确的方法和技术,或者从文献中提供的大量选项中选择最佳的技术组合来解决特定问题。本文通过比较使用来自真实数据集的特定特征的多类分类的不同方法和技术来解决这个问题。许多性能指标用于比较性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Multiclass Classifiers for Underwater Target Classification
Underwater target classification is a complex task, due to the difficulty in identifying non-overlapping and stable feature set. Moreover, choosing the discriminating algorithm for classification using these features is highly demanding. It is required to choose the right approach and the technique, or the best combinations of techniques from a large set of options available in the literature for the specific problem. The paper addresses this issue by comparing different approaches and techniques for multiclass classification using a particular feature derived from the real data sets. A number of performance metrices are used to compare the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信