T. C. Shibin Krishna, Neha Aggarwal, Monu Mishra, Govind Gupta, K. Maurya, M. Kaur, Sandeep Singh
{"title":"Ga通量和rf功率对单晶GaN薄膜同外延生长的影响","authors":"T. C. Shibin Krishna, Neha Aggarwal, Monu Mishra, Govind Gupta, K. Maurya, M. Kaur, Sandeep Singh","doi":"10.1109/ICEMELEC.2014.7151149","DOIUrl":null,"url":null,"abstract":"We investigated the effect of Ga flux and plasma power on the homoepitaxial growth of GaN epitaxial films by Molecular Beam Epitaxy (MBE) on MOCVD-grown GaN templates on c-sapphire substrates. The grown GaN films were characterized by several techniques to assess their structural and morphological properties. The surface morphology, dislocation densities and crystalline quality were found to be contingent on two parameters namely, Ga flux and the RF-plasma power. It was observed that, on increasing the Ga flux at constant rf-power, the crystalline quality as well as the surface morphology of the GaN film improved. On increasing the plasma power at low Ga flux, the crystallinity of the grown homoepitaxial film further enhanced significantly, but the surface roughness slightly increased due to the formation of hexagonal islands. The dependence of growth parameters on crystalline quality, threading dislocation densities, and surface morphology has been studied.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"1377 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Ga flux and rf-power on homoepitaxial growth of single crystalline GaN films\",\"authors\":\"T. C. Shibin Krishna, Neha Aggarwal, Monu Mishra, Govind Gupta, K. Maurya, M. Kaur, Sandeep Singh\",\"doi\":\"10.1109/ICEMELEC.2014.7151149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the effect of Ga flux and plasma power on the homoepitaxial growth of GaN epitaxial films by Molecular Beam Epitaxy (MBE) on MOCVD-grown GaN templates on c-sapphire substrates. The grown GaN films were characterized by several techniques to assess their structural and morphological properties. The surface morphology, dislocation densities and crystalline quality were found to be contingent on two parameters namely, Ga flux and the RF-plasma power. It was observed that, on increasing the Ga flux at constant rf-power, the crystalline quality as well as the surface morphology of the GaN film improved. On increasing the plasma power at low Ga flux, the crystallinity of the grown homoepitaxial film further enhanced significantly, but the surface roughness slightly increased due to the formation of hexagonal islands. The dependence of growth parameters on crystalline quality, threading dislocation densities, and surface morphology has been studied.\",\"PeriodicalId\":186054,\"journal\":{\"name\":\"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)\",\"volume\":\"1377 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMELEC.2014.7151149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Ga flux and rf-power on homoepitaxial growth of single crystalline GaN films
We investigated the effect of Ga flux and plasma power on the homoepitaxial growth of GaN epitaxial films by Molecular Beam Epitaxy (MBE) on MOCVD-grown GaN templates on c-sapphire substrates. The grown GaN films were characterized by several techniques to assess their structural and morphological properties. The surface morphology, dislocation densities and crystalline quality were found to be contingent on two parameters namely, Ga flux and the RF-plasma power. It was observed that, on increasing the Ga flux at constant rf-power, the crystalline quality as well as the surface morphology of the GaN film improved. On increasing the plasma power at low Ga flux, the crystallinity of the grown homoepitaxial film further enhanced significantly, but the surface roughness slightly increased due to the formation of hexagonal islands. The dependence of growth parameters on crystalline quality, threading dislocation densities, and surface morphology has been studied.