磁共振成像中混沌压缩感知的实现

Truong Minh-Chinh, N. Linh-Trung, Tran Duc-Tan
{"title":"磁共振成像中混沌压缩感知的实现","authors":"Truong Minh-Chinh, N. Linh-Trung, Tran Duc-Tan","doi":"10.1109/ATC.2016.7764754","DOIUrl":null,"url":null,"abstract":"We consider the application of Compressed Sensing (CS) to enhance the acquisition speed in Magnetic Resonance Imaging (MRI). For CS-based MRI, random sampling is often implemented in the k-space and depends on the uniform distribution and energy distribution of MRI images in the k-space. In contrast, we propose a new deterministic sampling method for CS-based MRI using the logistic map, which has good statistical properties and can be easily converted to uniform-like chaotic sequences. Simulation results confirmed that the proposed method is equivalent to state-of-the-art methods in terms of the relative root-mean-square error and the probability of exact reconstruction.","PeriodicalId":225413,"journal":{"name":"2016 International Conference on Advanced Technologies for Communications (ATC)","volume":"297 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the implementation of chaotic compressed sensing for MRI\",\"authors\":\"Truong Minh-Chinh, N. Linh-Trung, Tran Duc-Tan\",\"doi\":\"10.1109/ATC.2016.7764754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the application of Compressed Sensing (CS) to enhance the acquisition speed in Magnetic Resonance Imaging (MRI). For CS-based MRI, random sampling is often implemented in the k-space and depends on the uniform distribution and energy distribution of MRI images in the k-space. In contrast, we propose a new deterministic sampling method for CS-based MRI using the logistic map, which has good statistical properties and can be easily converted to uniform-like chaotic sequences. Simulation results confirmed that the proposed method is equivalent to state-of-the-art methods in terms of the relative root-mean-square error and the probability of exact reconstruction.\",\"PeriodicalId\":225413,\"journal\":{\"name\":\"2016 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"297 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC.2016.7764754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2016.7764754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑应用压缩感知(CS)来提高磁共振成像(MRI)的采集速度。对于基于cs的MRI,通常在k空间中进行随机采样,并且依赖于MRI图像在k空间中的均匀分布和能量分布。相比之下,我们提出了一种新的基于CS-based MRI的确定性采样方法,该方法使用逻辑映射,具有良好的统计性能,可以很容易地转换为均匀混沌序列。仿真结果表明,该方法在相对均方根误差和精确重构概率方面与现有方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the implementation of chaotic compressed sensing for MRI
We consider the application of Compressed Sensing (CS) to enhance the acquisition speed in Magnetic Resonance Imaging (MRI). For CS-based MRI, random sampling is often implemented in the k-space and depends on the uniform distribution and energy distribution of MRI images in the k-space. In contrast, we propose a new deterministic sampling method for CS-based MRI using the logistic map, which has good statistical properties and can be easily converted to uniform-like chaotic sequences. Simulation results confirmed that the proposed method is equivalent to state-of-the-art methods in terms of the relative root-mean-square error and the probability of exact reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信