{"title":"高维因子模型中块对角线特质协方差的估计","authors":"Lucija Žignić, Stjepan Begušić, Z. Kostanjčar","doi":"10.23919/softcom55329.2022.9911372","DOIUrl":null,"url":null,"abstract":"Factor models are often used to infer lower-dimensional correlation structures in data, especially when the number of variables grows close to or beyond the number of data points. The data covariance under a factor model structure is a combination of a low-rank component due to common factors and a diagonal or sparse idiosyncratic component. In this paper we consider the estimation of the idiosyncratic component under the assumption of grouped variables, which result in a block-diagonal matrix. We propose a shrinkage approach which ensures the positive definiteness of the estimated matrix, using either known group structures or clustering algorithms to determine them. The proposed methods are tested in a portfolio optimization scenario using simulations and historical data. The results show that the cluster based estimators yield improved performance in terms of out-of-sample portfolio variance, as well as remarkable stability in terms of resilience to the error in the estimated number of latent factors.","PeriodicalId":261625,"journal":{"name":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"165 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Block-Diagonal Idiosyncratic Covariance in High-Dimensional Factor Models\",\"authors\":\"Lucija Žignić, Stjepan Begušić, Z. Kostanjčar\",\"doi\":\"10.23919/softcom55329.2022.9911372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Factor models are often used to infer lower-dimensional correlation structures in data, especially when the number of variables grows close to or beyond the number of data points. The data covariance under a factor model structure is a combination of a low-rank component due to common factors and a diagonal or sparse idiosyncratic component. In this paper we consider the estimation of the idiosyncratic component under the assumption of grouped variables, which result in a block-diagonal matrix. We propose a shrinkage approach which ensures the positive definiteness of the estimated matrix, using either known group structures or clustering algorithms to determine them. The proposed methods are tested in a portfolio optimization scenario using simulations and historical data. The results show that the cluster based estimators yield improved performance in terms of out-of-sample portfolio variance, as well as remarkable stability in terms of resilience to the error in the estimated number of latent factors.\",\"PeriodicalId\":261625,\"journal\":{\"name\":\"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"volume\":\"165 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/softcom55329.2022.9911372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/softcom55329.2022.9911372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating the Block-Diagonal Idiosyncratic Covariance in High-Dimensional Factor Models
Factor models are often used to infer lower-dimensional correlation structures in data, especially when the number of variables grows close to or beyond the number of data points. The data covariance under a factor model structure is a combination of a low-rank component due to common factors and a diagonal or sparse idiosyncratic component. In this paper we consider the estimation of the idiosyncratic component under the assumption of grouped variables, which result in a block-diagonal matrix. We propose a shrinkage approach which ensures the positive definiteness of the estimated matrix, using either known group structures or clustering algorithms to determine them. The proposed methods are tested in a portfolio optimization scenario using simulations and historical data. The results show that the cluster based estimators yield improved performance in terms of out-of-sample portfolio variance, as well as remarkable stability in terms of resilience to the error in the estimated number of latent factors.