利用测量工具制定3d打印过程的收缩规则

Casey Jones
{"title":"利用测量工具制定3d打印过程的收缩规则","authors":"Casey Jones","doi":"10.51843/wsproceedings.2016.18","DOIUrl":null,"url":null,"abstract":"Rapid prototyping, in particular 3-D printing, has quickly grown to be a critical part of the design, inspect, and evaluate process involved in product design. Parts of moderate size may be 3-D printed using various plastic materials like Acrylonitrile Butadiene Styrene (ABS) and nylon, which have quickly replaced the powder-based 3-D printers. These plastic processes utilize relatively inexpensive printers and materials and their popularity has soared as a result. The Purdue Polytechnic campus in Columbus, Indiana, now employs five 3-D printers to supplement its mechanical design, inspection, and validation instruction by also using the tools and resources of an environmentally-controlled metrology lab. The objective of this study is to design, print, and measure various part geometries to determine how closely the 3D printed part dimensions are to the original design. 3D printed parts do shrink as they cool following the printing process. In essence, this is very similar to shrinkage that occurs during the metal casting process and so the goal is identify and create a \"shrink rule\" for 3D printed plastic parts. There are multiple variables involved in the process including material, nozzle speed of the 3D printer, resolution of the printer, and size of the part among others. These different variables are explored in this study to determine the optimal process for accurate and repeatable 3D printing. A Zeiss Duramax coordinate measuring machine is utilized to perform the dimensional measurements of the parts. Various part orientations on the CMM are also investigated to determine any sensitivity to the measurement process. Results will demonstrate that parts need to be scaled up by 1.1% to 1.3% to accurately account for shrinkage of the material.","PeriodicalId":162467,"journal":{"name":"NCSL International Workshop & Symposium Conference Proceedings 2016","volume":"107 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Measurement Tools to Develop a Shrink Rule for the 3-D Printing Process \",\"authors\":\"Casey Jones\",\"doi\":\"10.51843/wsproceedings.2016.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid prototyping, in particular 3-D printing, has quickly grown to be a critical part of the design, inspect, and evaluate process involved in product design. Parts of moderate size may be 3-D printed using various plastic materials like Acrylonitrile Butadiene Styrene (ABS) and nylon, which have quickly replaced the powder-based 3-D printers. These plastic processes utilize relatively inexpensive printers and materials and their popularity has soared as a result. The Purdue Polytechnic campus in Columbus, Indiana, now employs five 3-D printers to supplement its mechanical design, inspection, and validation instruction by also using the tools and resources of an environmentally-controlled metrology lab. The objective of this study is to design, print, and measure various part geometries to determine how closely the 3D printed part dimensions are to the original design. 3D printed parts do shrink as they cool following the printing process. In essence, this is very similar to shrinkage that occurs during the metal casting process and so the goal is identify and create a \\\"shrink rule\\\" for 3D printed plastic parts. There are multiple variables involved in the process including material, nozzle speed of the 3D printer, resolution of the printer, and size of the part among others. These different variables are explored in this study to determine the optimal process for accurate and repeatable 3D printing. A Zeiss Duramax coordinate measuring machine is utilized to perform the dimensional measurements of the parts. Various part orientations on the CMM are also investigated to determine any sensitivity to the measurement process. Results will demonstrate that parts need to be scaled up by 1.1% to 1.3% to accurately account for shrinkage of the material.\",\"PeriodicalId\":162467,\"journal\":{\"name\":\"NCSL International Workshop & Symposium Conference Proceedings 2016\",\"volume\":\"107 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NCSL International Workshop & Symposium Conference Proceedings 2016\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51843/wsproceedings.2016.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NCSL International Workshop & Symposium Conference Proceedings 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51843/wsproceedings.2016.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速原型设计,特别是3d打印,已经迅速发展成为产品设计中设计、检查和评估过程的关键部分。中等尺寸的部件可以使用各种塑料材料进行3d打印,如丙烯腈丁二烯苯乙烯(ABS)和尼龙,它们已经迅速取代了基于粉末的3d打印机。这些塑料工艺使用相对便宜的打印机和材料,因此它们的受欢迎程度飙升。位于印第安纳州哥伦布市的普渡理工学院(Purdue Polytechnic)现在使用五台3d打印机来补充其机械设计、检查和验证指令,同时还使用环境控制计量实验室的工具和资源。本研究的目的是设计、打印和测量各种零件的几何形状,以确定3D打印零件尺寸与原始设计的接近程度。3D打印的部件在打印过程中冷却时确实会收缩。从本质上讲,这与金属铸造过程中发生的收缩非常相似,因此目标是识别和创建3D打印塑料部件的“收缩规则”。该过程涉及多个变量,包括材料、3D打印机的喷嘴速度、打印机的分辨率和零件的尺寸等。在本研究中探讨了这些不同的变量,以确定准确和可重复的3D打印的最佳工艺。采用蔡司Duramax三坐标测量机对零件进行尺寸测量。还研究了CMM上的各种零件方向,以确定对测量过程的任何灵敏度。结果将表明,零件需要按比例放大1.1%至1.3%,才能准确地反映材料的收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Measurement Tools to Develop a Shrink Rule for the 3-D Printing Process 
Rapid prototyping, in particular 3-D printing, has quickly grown to be a critical part of the design, inspect, and evaluate process involved in product design. Parts of moderate size may be 3-D printed using various plastic materials like Acrylonitrile Butadiene Styrene (ABS) and nylon, which have quickly replaced the powder-based 3-D printers. These plastic processes utilize relatively inexpensive printers and materials and their popularity has soared as a result. The Purdue Polytechnic campus in Columbus, Indiana, now employs five 3-D printers to supplement its mechanical design, inspection, and validation instruction by also using the tools and resources of an environmentally-controlled metrology lab. The objective of this study is to design, print, and measure various part geometries to determine how closely the 3D printed part dimensions are to the original design. 3D printed parts do shrink as they cool following the printing process. In essence, this is very similar to shrinkage that occurs during the metal casting process and so the goal is identify and create a "shrink rule" for 3D printed plastic parts. There are multiple variables involved in the process including material, nozzle speed of the 3D printer, resolution of the printer, and size of the part among others. These different variables are explored in this study to determine the optimal process for accurate and repeatable 3D printing. A Zeiss Duramax coordinate measuring machine is utilized to perform the dimensional measurements of the parts. Various part orientations on the CMM are also investigated to determine any sensitivity to the measurement process. Results will demonstrate that parts need to be scaled up by 1.1% to 1.3% to accurately account for shrinkage of the material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信