EG-HRNet:一种高效的高分辨率网络,使用幽灵模块进行人体姿势估计

Yiting Wang, Zhenyin Zhang, Gengsheng Chen
{"title":"EG-HRNet:一种高效的高分辨率网络,使用幽灵模块进行人体姿势估计","authors":"Yiting Wang, Zhenyin Zhang, Gengsheng Chen","doi":"10.1109/ASICON52560.2021.9620383","DOIUrl":null,"url":null,"abstract":"As an essential task in predicting a human’s behavior, human pose estimation (HPE) plays a very important role in many real-time applications. However, existing HPE methods are still too large which severely prevents them to be used in resource-sensitive applications. In this paper, aiming to a significant reduction in computation complexity, we propose an efficient high-resolution HPE network using ghost-modules (EG-HRNet). Based on the HRNet architecture, the new EG-HRNet uses modified shuffle blocks as the inner blocks to replace the residual blocks. Meanwhile, we use the lightweight ghost bottleneck for a more efficient feature extraction and use the ghost modules in the fusion layers to replace the costly 1x1 point-wise convolutions. Finally, we use the distribution-aware coordinate representation of the keypoints to acquire more accurate heatmaps of the input images. The experimental results on the COCO keypoint detection dataset show that the new efficient EG-HRNet model has successfully reached a tender balance between the processing speed and the estimation accuracy.","PeriodicalId":233584,"journal":{"name":"2021 IEEE 14th International Conference on ASIC (ASICON)","volume":"20 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EG-HRNet: An Efficient High-Resolution Network Using Ghost-Modules for Human Pose Estimation\",\"authors\":\"Yiting Wang, Zhenyin Zhang, Gengsheng Chen\",\"doi\":\"10.1109/ASICON52560.2021.9620383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an essential task in predicting a human’s behavior, human pose estimation (HPE) plays a very important role in many real-time applications. However, existing HPE methods are still too large which severely prevents them to be used in resource-sensitive applications. In this paper, aiming to a significant reduction in computation complexity, we propose an efficient high-resolution HPE network using ghost-modules (EG-HRNet). Based on the HRNet architecture, the new EG-HRNet uses modified shuffle blocks as the inner blocks to replace the residual blocks. Meanwhile, we use the lightweight ghost bottleneck for a more efficient feature extraction and use the ghost modules in the fusion layers to replace the costly 1x1 point-wise convolutions. Finally, we use the distribution-aware coordinate representation of the keypoints to acquire more accurate heatmaps of the input images. The experimental results on the COCO keypoint detection dataset show that the new efficient EG-HRNet model has successfully reached a tender balance between the processing speed and the estimation accuracy.\",\"PeriodicalId\":233584,\"journal\":{\"name\":\"2021 IEEE 14th International Conference on ASIC (ASICON)\",\"volume\":\"20 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th International Conference on ASIC (ASICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASICON52560.2021.9620383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON52560.2021.9620383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人体姿态估计作为预测人体行为的一项重要任务,在许多实时应用中起着非常重要的作用。然而,现有的HPE方法仍然过于庞大,严重阻碍了它们在资源敏感型应用程序中的使用。在本文中,为了显著降低计算复杂度,我们提出了一个使用幽灵模块的高效高分辨率HPE网络(EG-HRNet)。基于HRNet体系结构,新EG-HRNet使用修改后的shuffle块作为内部块来替换剩余块。同时,我们使用轻量级的幽灵瓶颈进行更有效的特征提取,并使用融合层中的幽灵模块取代昂贵的1x1点向卷积。最后,我们使用关键点的分布感知坐标表示来获得更精确的输入图像热图。在COCO关键点检测数据集上的实验结果表明,新的高效EG-HRNet模型成功地达到了处理速度和估计精度之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EG-HRNet: An Efficient High-Resolution Network Using Ghost-Modules for Human Pose Estimation
As an essential task in predicting a human’s behavior, human pose estimation (HPE) plays a very important role in many real-time applications. However, existing HPE methods are still too large which severely prevents them to be used in resource-sensitive applications. In this paper, aiming to a significant reduction in computation complexity, we propose an efficient high-resolution HPE network using ghost-modules (EG-HRNet). Based on the HRNet architecture, the new EG-HRNet uses modified shuffle blocks as the inner blocks to replace the residual blocks. Meanwhile, we use the lightweight ghost bottleneck for a more efficient feature extraction and use the ghost modules in the fusion layers to replace the costly 1x1 point-wise convolutions. Finally, we use the distribution-aware coordinate representation of the keypoints to acquire more accurate heatmaps of the input images. The experimental results on the COCO keypoint detection dataset show that the new efficient EG-HRNet model has successfully reached a tender balance between the processing speed and the estimation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信