A. Elbir, Hamza Osman Ilhan, Mehmet Aydin, Yunus Emre Demirbulut
{"title":"客户流失分析中分类聚类技术的实现","authors":"A. Elbir, Hamza Osman Ilhan, Mehmet Aydin, Yunus Emre Demirbulut","doi":"10.54856/jiswa.201905065","DOIUrl":null,"url":null,"abstract":"One of the most important problems of telecommunication companies is the potential transfer of customers between the firms. In order to avoid this problem, it is very important to identify customers who are likely to leave. In this study, the performance of the classification and the clustering algorithms in machine learning techniques has been evaluated and compared on the analysis of potential customer trends, which have been reported as churn analysis. K nearest neighbors, decision trees, random forests, support vector machines and naive bayes methods were tested in scope of classification idea. Additionally, K-Means and hierarchical clustering methods were tested. The performances of the methods have been evaluated according to the accuracy, precision, sensitivity and F-measure performance metrics.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"9 22","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Implementation of Classification and Clustering Techniques on Churn Analysis\",\"authors\":\"A. Elbir, Hamza Osman Ilhan, Mehmet Aydin, Yunus Emre Demirbulut\",\"doi\":\"10.54856/jiswa.201905065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important problems of telecommunication companies is the potential transfer of customers between the firms. In order to avoid this problem, it is very important to identify customers who are likely to leave. In this study, the performance of the classification and the clustering algorithms in machine learning techniques has been evaluated and compared on the analysis of potential customer trends, which have been reported as churn analysis. K nearest neighbors, decision trees, random forests, support vector machines and naive bayes methods were tested in scope of classification idea. Additionally, K-Means and hierarchical clustering methods were tested. The performances of the methods have been evaluated according to the accuracy, precision, sensitivity and F-measure performance metrics.\",\"PeriodicalId\":112412,\"journal\":{\"name\":\"Journal of Intelligent Systems with Applications\",\"volume\":\"9 22\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54856/jiswa.201905065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.201905065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Implementation of Classification and Clustering Techniques on Churn Analysis
One of the most important problems of telecommunication companies is the potential transfer of customers between the firms. In order to avoid this problem, it is very important to identify customers who are likely to leave. In this study, the performance of the classification and the clustering algorithms in machine learning techniques has been evaluated and compared on the analysis of potential customer trends, which have been reported as churn analysis. K nearest neighbors, decision trees, random forests, support vector machines and naive bayes methods were tested in scope of classification idea. Additionally, K-Means and hierarchical clustering methods were tested. The performances of the methods have been evaluated according to the accuracy, precision, sensitivity and F-measure performance metrics.