基于神经网络的场理论符号问题路径优化

A. Ohnishi, Y. Mori, K. Kashiwa
{"title":"基于神经网络的场理论符号问题路径优化","authors":"A. Ohnishi, Y. Mori, K. Kashiwa","doi":"10.7566/jpscp.26.024011","DOIUrl":null,"url":null,"abstract":"We investigate the sign problem in field theories by using the path optimization method (POM) with use of the feedforward neural network (FNN). We utilize FNN to prepare and optimize the trial function specifying the integration path (manifold) in field theories in the framework of POM. POM with use of FNN has been applied to several field theories having the sign problem. Specifically, the 0+1 dimensional QCD is discussed. It is found that the average phase factor is enhanced significantly and we can reduce the statistical errors of observables.","PeriodicalId":175849,"journal":{"name":"Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018)","volume":"73 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Path Optimization for the Sign Problem in Field Theories Using Neural Network\",\"authors\":\"A. Ohnishi, Y. Mori, K. Kashiwa\",\"doi\":\"10.7566/jpscp.26.024011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the sign problem in field theories by using the path optimization method (POM) with use of the feedforward neural network (FNN). We utilize FNN to prepare and optimize the trial function specifying the integration path (manifold) in field theories in the framework of POM. POM with use of FNN has been applied to several field theories having the sign problem. Specifically, the 0+1 dimensional QCD is discussed. It is found that the average phase factor is enhanced significantly and we can reduce the statistical errors of observables.\",\"PeriodicalId\":175849,\"journal\":{\"name\":\"Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018)\",\"volume\":\"73 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7566/jpscp.26.024011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/jpscp.26.024011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用前馈神经网络(FNN),利用路径优化方法研究了场理论中的符号问题。在POM的框架下,利用模糊神经网络编制和优化场理论中指定积分路径(流形)的试函数。利用FNN的POM方法已应用于若干具有符号问题的场论。具体来说,讨论了0+1维QCD。结果表明,该方法显著提高了平均相位因子,减小了观测值的统计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Optimization for the Sign Problem in Field Theories Using Neural Network
We investigate the sign problem in field theories by using the path optimization method (POM) with use of the feedforward neural network (FNN). We utilize FNN to prepare and optimize the trial function specifying the integration path (manifold) in field theories in the framework of POM. POM with use of FNN has been applied to several field theories having the sign problem. Specifically, the 0+1 dimensional QCD is discussed. It is found that the average phase factor is enhanced significantly and we can reduce the statistical errors of observables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信