A. H. Azman, R. Ayub, M. Arshad, S. Norhafiezah, M. Fathil, M. Z. Kamarudin, M. Nurfaiz, U. Hashim
{"title":"在干热氧化过程中加入氮气控制超薄二氧化硅层的生长速率","authors":"A. H. Azman, R. Ayub, M. Arshad, S. Norhafiezah, M. Fathil, M. Z. Kamarudin, M. Nurfaiz, U. Hashim","doi":"10.1109/SMELEC.2014.6920880","DOIUrl":null,"url":null,"abstract":"The continuing trend toward miniaturization of silicon devices is enforcing development of ultra-thin dielectrics. While the thermally grown SiO2 has been used as a gate dielectric ever since the decade of silicon device began, it appears that the electrical and physical properties of pure SiO2 are not good enough to provide acceptable for ultra-thin gate dielectric film. There are many available methods to control the ultra-thin film; In this paper we show a simple but promising method that incorporated nitrogen as a second gas in the dry oxidation process, on which the growth rate can be controlled. This method produce surface protective layers against impurity penetration, good interfacial characteristics and strengthens the oxide structure, which directly related to improvement the gate dielectric quality.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"36 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Controlling growth rate of ultra-thin Silicon Dioxide layer by incorporating nitrogen gas during dry thermal oxidation\",\"authors\":\"A. H. Azman, R. Ayub, M. Arshad, S. Norhafiezah, M. Fathil, M. Z. Kamarudin, M. Nurfaiz, U. Hashim\",\"doi\":\"10.1109/SMELEC.2014.6920880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuing trend toward miniaturization of silicon devices is enforcing development of ultra-thin dielectrics. While the thermally grown SiO2 has been used as a gate dielectric ever since the decade of silicon device began, it appears that the electrical and physical properties of pure SiO2 are not good enough to provide acceptable for ultra-thin gate dielectric film. There are many available methods to control the ultra-thin film; In this paper we show a simple but promising method that incorporated nitrogen as a second gas in the dry oxidation process, on which the growth rate can be controlled. This method produce surface protective layers against impurity penetration, good interfacial characteristics and strengthens the oxide structure, which directly related to improvement the gate dielectric quality.\",\"PeriodicalId\":268203,\"journal\":{\"name\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"volume\":\"36 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2014.6920880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controlling growth rate of ultra-thin Silicon Dioxide layer by incorporating nitrogen gas during dry thermal oxidation
The continuing trend toward miniaturization of silicon devices is enforcing development of ultra-thin dielectrics. While the thermally grown SiO2 has been used as a gate dielectric ever since the decade of silicon device began, it appears that the electrical and physical properties of pure SiO2 are not good enough to provide acceptable for ultra-thin gate dielectric film. There are many available methods to control the ultra-thin film; In this paper we show a simple but promising method that incorporated nitrogen as a second gas in the dry oxidation process, on which the growth rate can be controlled. This method produce surface protective layers against impurity penetration, good interfacial characteristics and strengthens the oxide structure, which directly related to improvement the gate dielectric quality.