量子力学电荷阱模型在低温下解释BTI

J. Michl, A. Grill, D. Claes, G. Rzepa, B. Kaczer, D. Linten, I. Radu, T. Grasser, M. Waltl
{"title":"量子力学电荷阱模型在低温下解释BTI","authors":"J. Michl, A. Grill, D. Claes, G. Rzepa, B. Kaczer, D. Linten, I. Radu, T. Grasser, M. Waltl","doi":"10.1109/IRPS45951.2020.9128349","DOIUrl":null,"url":null,"abstract":"Electronics operating at cryogenic temperatures is crucial for scaling up single qubits to complex quantum computing systems. There are various studies concentrating on the characterization of advanced CMOS technologies operating at low temperatures, but so far little attention has been paid to reliability issues. Even though classical models predict BTI to freeze out, our measurements clearly reveal a significant threshold voltage degradation down to 4 K. This effect can be consistently explained by considering a quantum mechanical extension for the description of charge transitions in the transistor, which leads to an effective barrier lowering towards cryogenic temperatures. We implement this model in our reliability simulator Comphy and are finally able to fully explain BTI behaviour at temperatures down to 4 K.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"6 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures\",\"authors\":\"J. Michl, A. Grill, D. Claes, G. Rzepa, B. Kaczer, D. Linten, I. Radu, T. Grasser, M. Waltl\",\"doi\":\"10.1109/IRPS45951.2020.9128349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronics operating at cryogenic temperatures is crucial for scaling up single qubits to complex quantum computing systems. There are various studies concentrating on the characterization of advanced CMOS technologies operating at low temperatures, but so far little attention has been paid to reliability issues. Even though classical models predict BTI to freeze out, our measurements clearly reveal a significant threshold voltage degradation down to 4 K. This effect can be consistently explained by considering a quantum mechanical extension for the description of charge transitions in the transistor, which leads to an effective barrier lowering towards cryogenic temperatures. We implement this model in our reliability simulator Comphy and are finally able to fully explain BTI behaviour at temperatures down to 4 K.\",\"PeriodicalId\":116002,\"journal\":{\"name\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"6 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS45951.2020.9128349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9128349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在低温下运行的电子设备对于将单个量子比特扩展到复杂的量子计算系统至关重要。有各种各样的研究集中在低温下工作的先进CMOS技术的特性,但到目前为止,很少有人关注可靠性问题。尽管经典模型预测BTI会冻结,但我们的测量结果清楚地显示,阈值电压下降到4 K。这种效应可以通过考虑晶体管中电荷跃迁描述的量子力学扩展来一致地解释,这导致有效的势垒降低到低温。我们在我们的可靠性模拟器Comphy中实现了这个模型,并最终能够完全解释温度低至4 K时BTI的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Mechanical Charge Trap Modeling to Explain BTI at Cryogenic Temperatures
Electronics operating at cryogenic temperatures is crucial for scaling up single qubits to complex quantum computing systems. There are various studies concentrating on the characterization of advanced CMOS technologies operating at low temperatures, but so far little attention has been paid to reliability issues. Even though classical models predict BTI to freeze out, our measurements clearly reveal a significant threshold voltage degradation down to 4 K. This effect can be consistently explained by considering a quantum mechanical extension for the description of charge transitions in the transistor, which leads to an effective barrier lowering towards cryogenic temperatures. We implement this model in our reliability simulator Comphy and are finally able to fully explain BTI behaviour at temperatures down to 4 K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信