{"title":"射频能量采集器的自校准阈值补偿技术","authors":"K. Gharehbaghi, O. Zorlu, F. Koçer, H. Kulah","doi":"10.1109/RFIC.2015.7337734","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a new threshold compensation technique for UHF Dickson rectifiers. The proposed solution addresses the efficiency reduction of previous architectures especially under large input powers. The measurements show that the proposed technique achieves very good efficiency within 10 dBm variation of the input power. Therefore, the technique is suitable for applications where the incident power is not constant. Thanks to the reduction in the reverse leakage current, a peak efficiency of 34% at 433 MHz was measured.","PeriodicalId":121490,"journal":{"name":"2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Auto-calibrating threshold compensation technique for RF energy harvesters\",\"authors\":\"K. Gharehbaghi, O. Zorlu, F. Koçer, H. Kulah\",\"doi\":\"10.1109/RFIC.2015.7337734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a new threshold compensation technique for UHF Dickson rectifiers. The proposed solution addresses the efficiency reduction of previous architectures especially under large input powers. The measurements show that the proposed technique achieves very good efficiency within 10 dBm variation of the input power. Therefore, the technique is suitable for applications where the incident power is not constant. Thanks to the reduction in the reverse leakage current, a peak efficiency of 34% at 433 MHz was measured.\",\"PeriodicalId\":121490,\"journal\":{\"name\":\"2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2015.7337734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2015.7337734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Auto-calibrating threshold compensation technique for RF energy harvesters
This paper presents the design of a new threshold compensation technique for UHF Dickson rectifiers. The proposed solution addresses the efficiency reduction of previous architectures especially under large input powers. The measurements show that the proposed technique achieves very good efficiency within 10 dBm variation of the input power. Therefore, the technique is suitable for applications where the incident power is not constant. Thanks to the reduction in the reverse leakage current, a peak efficiency of 34% at 433 MHz was measured.