基于决策树、k近邻和Naïve贝叶斯的推文电子商务情感分析

Achmad Bayhaqy, Sfenrianto Sfenrianto, Kaman Nainggolan, E. Kaburuan
{"title":"基于决策树、k近邻和Naïve贝叶斯的推文电子商务情感分析","authors":"Achmad Bayhaqy, Sfenrianto Sfenrianto, Kaman Nainggolan, E. Kaburuan","doi":"10.1109/ICOT.2018.8705796","DOIUrl":null,"url":null,"abstract":"Data mining can be used for data analysis of social media users who visit E-Commerce. This study uses data mining techniques aimed at comparing the classification in sentiment analysis from the views of E-Commerce customers who have been written on Twitter. The data set is derived from tweets about E-Commerce in Tokopedia and Bukalapak. Text mining techniques, transform, tokenize, stem, classification, etc. are used to build classification and analysis of sentiment analysis. Rapidminer is also used to assist in making analysis sentiments for comparison by using three different classifications in the dataset with the Decision Tree, K-NN, and Naïve Bayes Classifier approaches to find the best accuracy. The highest result of this study is the Naïve Bayes approach with an accuracy of 77%, precision 88.50% and recall of 64%.","PeriodicalId":402234,"journal":{"name":"2018 International Conference on Orange Technologies (ICOT)","volume":"15 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Sentiment Analysis about E-Commerce from Tweets Using Decision Tree, K-Nearest Neighbor, and Naïve Bayes\",\"authors\":\"Achmad Bayhaqy, Sfenrianto Sfenrianto, Kaman Nainggolan, E. Kaburuan\",\"doi\":\"10.1109/ICOT.2018.8705796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining can be used for data analysis of social media users who visit E-Commerce. This study uses data mining techniques aimed at comparing the classification in sentiment analysis from the views of E-Commerce customers who have been written on Twitter. The data set is derived from tweets about E-Commerce in Tokopedia and Bukalapak. Text mining techniques, transform, tokenize, stem, classification, etc. are used to build classification and analysis of sentiment analysis. Rapidminer is also used to assist in making analysis sentiments for comparison by using three different classifications in the dataset with the Decision Tree, K-NN, and Naïve Bayes Classifier approaches to find the best accuracy. The highest result of this study is the Naïve Bayes approach with an accuracy of 77%, precision 88.50% and recall of 64%.\",\"PeriodicalId\":402234,\"journal\":{\"name\":\"2018 International Conference on Orange Technologies (ICOT)\",\"volume\":\"15 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Orange Technologies (ICOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOT.2018.8705796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Orange Technologies (ICOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2018.8705796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

数据挖掘可以用于对访问电子商务的社交媒体用户进行数据分析。本研究使用数据挖掘技术,从Twitter上写的电子商务客户的观点中比较情感分析中的分类。该数据集来自Tokopedia和Bukalapak关于电子商务的推文。使用文本挖掘技术、变换技术、标记技术、词干技术、分类技术等构建情感分析的分类和分析。Rapidminer还用于通过使用决策树,K-NN和Naïve贝叶斯分类器方法在数据集中使用三种不同的分类来帮助进行比较分析,以找到最佳精度。本研究的最高结果是Naïve贝叶斯方法,准确率为77%,精密度为88.50%,召回率为64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis about E-Commerce from Tweets Using Decision Tree, K-Nearest Neighbor, and Naïve Bayes
Data mining can be used for data analysis of social media users who visit E-Commerce. This study uses data mining techniques aimed at comparing the classification in sentiment analysis from the views of E-Commerce customers who have been written on Twitter. The data set is derived from tweets about E-Commerce in Tokopedia and Bukalapak. Text mining techniques, transform, tokenize, stem, classification, etc. are used to build classification and analysis of sentiment analysis. Rapidminer is also used to assist in making analysis sentiments for comparison by using three different classifications in the dataset with the Decision Tree, K-NN, and Naïve Bayes Classifier approaches to find the best accuracy. The highest result of this study is the Naïve Bayes approach with an accuracy of 77%, precision 88.50% and recall of 64%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信