基于优化的宽带基函数高效互连提取

Xin Hu, T. Moselhy, Jacob K. White, L. Daniel
{"title":"基于优化的宽带基函数高效互连提取","authors":"Xin Hu, T. Moselhy, Jacob K. White, L. Daniel","doi":"10.1109/DATE.2007.364458","DOIUrl":null,"url":null,"abstract":"This paper introduces a technique for the numerical generation of basis functions that are capable of parameterizing the frequency-variant nature of cross-sectional conductor current distributions. Hence skin and proximity effects can be captured utilizing much fewer basis functions in comparison to the prevalently-used piecewise-constant basis functions. One important characteristic of these basis functions is that they only need to be pre-computed once for a frequency range of interest per unique conductor cross-sectional geometry, and they can be stored off-line with a minimal associated cost. In addition, the robustness of these frequency-independent basis functions is enforced using an optimization routine. It has been demonstrated that the cost of solving a complex interconnect system can be reduced by a factor of 170 when compared to the use of piecewise-constant basis functions over a wide range of operating frequencies","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"11 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimization-based Wideband Basis Functions for Efficient Interconnect Extraction\",\"authors\":\"Xin Hu, T. Moselhy, Jacob K. White, L. Daniel\",\"doi\":\"10.1109/DATE.2007.364458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a technique for the numerical generation of basis functions that are capable of parameterizing the frequency-variant nature of cross-sectional conductor current distributions. Hence skin and proximity effects can be captured utilizing much fewer basis functions in comparison to the prevalently-used piecewise-constant basis functions. One important characteristic of these basis functions is that they only need to be pre-computed once for a frequency range of interest per unique conductor cross-sectional geometry, and they can be stored off-line with a minimal associated cost. In addition, the robustness of these frequency-independent basis functions is enforced using an optimization routine. It has been demonstrated that the cost of solving a complex interconnect system can be reduced by a factor of 170 when compared to the use of piecewise-constant basis functions over a wide range of operating frequencies\",\"PeriodicalId\":298961,\"journal\":{\"name\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"volume\":\"11 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Design, Automation & Test in Europe Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2007.364458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2007.364458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种能够参数化导体横截面电流分布的频率变化特性的基函数的数值生成技术。因此,与普遍使用的分段常数基函数相比,可以利用更少的基函数捕获皮肤和接近效应。这些基函数的一个重要特征是,它们只需要针对每个独特导体截面几何形状的感兴趣的频率范围预先计算一次,并且它们可以以最小的相关成本离线存储。此外,这些与频率无关的基函数的鲁棒性是通过优化程序来实现的。已经证明,与在广泛的工作频率范围内使用分段常数基函数相比,求解复杂互连系统的成本可以降低170倍
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization-based Wideband Basis Functions for Efficient Interconnect Extraction
This paper introduces a technique for the numerical generation of basis functions that are capable of parameterizing the frequency-variant nature of cross-sectional conductor current distributions. Hence skin and proximity effects can be captured utilizing much fewer basis functions in comparison to the prevalently-used piecewise-constant basis functions. One important characteristic of these basis functions is that they only need to be pre-computed once for a frequency range of interest per unique conductor cross-sectional geometry, and they can be stored off-line with a minimal associated cost. In addition, the robustness of these frequency-independent basis functions is enforced using an optimization routine. It has been demonstrated that the cost of solving a complex interconnect system can be reduced by a factor of 170 when compared to the use of piecewise-constant basis functions over a wide range of operating frequencies
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信