{"title":"一种抗侧信道攻击的安全任务调度算法","authors":"Chongxi Bao, Ankur Srivastava","doi":"10.1145/2666141.2666142","DOIUrl":null,"url":null,"abstract":"The problem of ordering task executions has been well studied under power, performance, and thermal constraints. However, it has been pursued less under security concerns. We have observed that different orders of task executions have different side-channel information leakage, thus having different security levels. In this paper, we first model the behavior of the attacker and then propose a secure algorithm for ordering aperiodic tasks that have soft deadlines. Our algorithm can keep a good balance between side-channel information leakage and total lateness. Experimental results show that the attacker could make 38.65% more error inferring the state of chip through side-channel analysis if tasks are scheduled using our algorithm as compared to using algorithms without security consideration (like EDF algorithm).","PeriodicalId":350304,"journal":{"name":"Workshop on Trustworthy Embedded Devices","volume":"7 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Secure Algorithm for Task Scheduling against Side-channel Attacks\",\"authors\":\"Chongxi Bao, Ankur Srivastava\",\"doi\":\"10.1145/2666141.2666142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of ordering task executions has been well studied under power, performance, and thermal constraints. However, it has been pursued less under security concerns. We have observed that different orders of task executions have different side-channel information leakage, thus having different security levels. In this paper, we first model the behavior of the attacker and then propose a secure algorithm for ordering aperiodic tasks that have soft deadlines. Our algorithm can keep a good balance between side-channel information leakage and total lateness. Experimental results show that the attacker could make 38.65% more error inferring the state of chip through side-channel analysis if tasks are scheduled using our algorithm as compared to using algorithms without security consideration (like EDF algorithm).\",\"PeriodicalId\":350304,\"journal\":{\"name\":\"Workshop on Trustworthy Embedded Devices\",\"volume\":\"7 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Trustworthy Embedded Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666141.2666142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Trustworthy Embedded Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666141.2666142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Secure Algorithm for Task Scheduling against Side-channel Attacks
The problem of ordering task executions has been well studied under power, performance, and thermal constraints. However, it has been pursued less under security concerns. We have observed that different orders of task executions have different side-channel information leakage, thus having different security levels. In this paper, we first model the behavior of the attacker and then propose a secure algorithm for ordering aperiodic tasks that have soft deadlines. Our algorithm can keep a good balance between side-channel information leakage and total lateness. Experimental results show that the attacker could make 38.65% more error inferring the state of chip through side-channel analysis if tasks are scheduled using our algorithm as compared to using algorithms without security consideration (like EDF algorithm).