矩阵乘法算法到最优容错收缩数组的映射

I. Milovanovic, T. Tokic, M. Stojcev, E. Milovanovic, N. Novakovic
{"title":"矩阵乘法算法到最优容错收缩数组的映射","authors":"I. Milovanovic, T. Tokic, M. Stojcev, E. Milovanovic, N. Novakovic","doi":"10.1109/ICMEL.2000.838789","DOIUrl":null,"url":null,"abstract":"An approach to the design of fault-tolerant hexagonal systolic array (SA) for matrix multiplication is described. The approach comprises of three steps. First, redundancies are introduced at the computational level by deriving three equivalent algorithms but with disjoint index spaces. Second, we perform the accommodation of index spaces to the projection direction to obtain a hexagonal SA with an optimal number of processing elements (PE) for a given problem size. Finally, we perform mapping of the accommodated index spaces using a valid transformation matrix. As a result we obtain an SA with an optimal number of PEs which perform fault-tolerant matrix multiplication. In the case of square matrices of order N/spl times/N this array comprises N/sup 2/+2N PEs.","PeriodicalId":215956,"journal":{"name":"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)","volume":"4 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping matrix multiplication algorithm onto optimal fault-tolerant systolic array\",\"authors\":\"I. Milovanovic, T. Tokic, M. Stojcev, E. Milovanovic, N. Novakovic\",\"doi\":\"10.1109/ICMEL.2000.838789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach to the design of fault-tolerant hexagonal systolic array (SA) for matrix multiplication is described. The approach comprises of three steps. First, redundancies are introduced at the computational level by deriving three equivalent algorithms but with disjoint index spaces. Second, we perform the accommodation of index spaces to the projection direction to obtain a hexagonal SA with an optimal number of processing elements (PE) for a given problem size. Finally, we perform mapping of the accommodated index spaces using a valid transformation matrix. As a result we obtain an SA with an optimal number of PEs which perform fault-tolerant matrix multiplication. In the case of square matrices of order N/spl times/N this array comprises N/sup 2/+2N PEs.\",\"PeriodicalId\":215956,\"journal\":{\"name\":\"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)\",\"volume\":\"4 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEL.2000.838789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEL.2000.838789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种用于矩阵乘法的容错六边形收缩阵列的设计方法。该方法包括三个步骤。首先,通过推导三种等价的索引空间不相交的算法,在计算层面引入冗余。其次,我们执行索引空间对投影方向的调整,以获得具有给定问题大小的最优处理元素数(PE)的六边形SA。最后,我们使用有效的变换矩阵对所容纳的索引空间执行映射。我们得到了一个具有最优pe数目的SA,这些pe执行容错矩阵乘法。对于阶为N/spl * /N的方阵,该数组包含N/sup 2/+2N个pe。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping matrix multiplication algorithm onto optimal fault-tolerant systolic array
An approach to the design of fault-tolerant hexagonal systolic array (SA) for matrix multiplication is described. The approach comprises of three steps. First, redundancies are introduced at the computational level by deriving three equivalent algorithms but with disjoint index spaces. Second, we perform the accommodation of index spaces to the projection direction to obtain a hexagonal SA with an optimal number of processing elements (PE) for a given problem size. Finally, we perform mapping of the accommodated index spaces using a valid transformation matrix. As a result we obtain an SA with an optimal number of PEs which perform fault-tolerant matrix multiplication. In the case of square matrices of order N/spl times/N this array comprises N/sup 2/+2N PEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信