{"title":"突尼斯制鞋业有机溶剂的生物毒理学监测","authors":"I. Gargouri, F. Omrane, M. Khadhraoui","doi":"10.5772/intechopen.86295","DOIUrl":null,"url":null,"abstract":"Organic solvents (OS) are widely used in Tunisian footwear industry; however, there are no data related to employees ’ exposure. The objective of this study was therefore to adjust analytical methods in our laboratory for exposure assessment purposes. The predominant solvents are acetone, cyclohexane, hexane, methyl ethyl ketone, and toluene. Eighteen companies benefited from 55 airborne and 190 urine samples. Quantification of solvents and their metabolites was achieved by analytical methods that were adapted and validated in our laboratory. Airborne solvents were determined using gas chromatography (GC-FID). Urinary solvents or metabolites were measured either by GC or high-performance liquid chromatography (HPLC). Validation criteria were determined and used to judge the methods reliability. For airborne solvents, the concentrations exceeding the threshold limit value are mainly for hexane. For urines, the hippuric acid concentrations exceeded the biological limit value in semi-industrial process. Surprisingly, trans, trans-muconic acid was found in industrial and artisanal processes even though benzene was not among the used products. GC and HPLC methods have been adjusted, optimized, and effectively used to quantify OS and their metabolites in airborne and urine samples. Thus, a process of occupational risk assessment via a biotoxicological and airborne monitoring for solvents is now set.","PeriodicalId":275425,"journal":{"name":"Standards, Methods and Solutions of Metrology","volume":"34 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biotoxicological Monitoring of Organic Solvents in the Tunisian Footwear Industry\",\"authors\":\"I. Gargouri, F. Omrane, M. Khadhraoui\",\"doi\":\"10.5772/intechopen.86295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic solvents (OS) are widely used in Tunisian footwear industry; however, there are no data related to employees ’ exposure. The objective of this study was therefore to adjust analytical methods in our laboratory for exposure assessment purposes. The predominant solvents are acetone, cyclohexane, hexane, methyl ethyl ketone, and toluene. Eighteen companies benefited from 55 airborne and 190 urine samples. Quantification of solvents and their metabolites was achieved by analytical methods that were adapted and validated in our laboratory. Airborne solvents were determined using gas chromatography (GC-FID). Urinary solvents or metabolites were measured either by GC or high-performance liquid chromatography (HPLC). Validation criteria were determined and used to judge the methods reliability. For airborne solvents, the concentrations exceeding the threshold limit value are mainly for hexane. For urines, the hippuric acid concentrations exceeded the biological limit value in semi-industrial process. Surprisingly, trans, trans-muconic acid was found in industrial and artisanal processes even though benzene was not among the used products. GC and HPLC methods have been adjusted, optimized, and effectively used to quantify OS and their metabolites in airborne and urine samples. Thus, a process of occupational risk assessment via a biotoxicological and airborne monitoring for solvents is now set.\",\"PeriodicalId\":275425,\"journal\":{\"name\":\"Standards, Methods and Solutions of Metrology\",\"volume\":\"34 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Standards, Methods and Solutions of Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.86295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Standards, Methods and Solutions of Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.86295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biotoxicological Monitoring of Organic Solvents in the Tunisian Footwear Industry
Organic solvents (OS) are widely used in Tunisian footwear industry; however, there are no data related to employees ’ exposure. The objective of this study was therefore to adjust analytical methods in our laboratory for exposure assessment purposes. The predominant solvents are acetone, cyclohexane, hexane, methyl ethyl ketone, and toluene. Eighteen companies benefited from 55 airborne and 190 urine samples. Quantification of solvents and their metabolites was achieved by analytical methods that were adapted and validated in our laboratory. Airborne solvents were determined using gas chromatography (GC-FID). Urinary solvents or metabolites were measured either by GC or high-performance liquid chromatography (HPLC). Validation criteria were determined and used to judge the methods reliability. For airborne solvents, the concentrations exceeding the threshold limit value are mainly for hexane. For urines, the hippuric acid concentrations exceeded the biological limit value in semi-industrial process. Surprisingly, trans, trans-muconic acid was found in industrial and artisanal processes even though benzene was not among the used products. GC and HPLC methods have been adjusted, optimized, and effectively used to quantify OS and their metabolites in airborne and urine samples. Thus, a process of occupational risk assessment via a biotoxicological and airborne monitoring for solvents is now set.