{"title":"微刀采用超声波振动","authors":"F. Arai, T. Amano, T. Fukuda, H. Satoh","doi":"10.1109/MHS.2000.903312","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to develop a minute size knife for cutting of minute objects such as cells. We report on a microknife that cuts the object by using ultrasonic vibration of a sharp needle. We employed a multilayer piezoelectric actuator for generating the ultrasonic vibration for cutting. Also, we made a tactile sensor for the microknife by using PZT thin film made by the hydrothermal method. We evaluated the cutting performance and the tactile sensor by experiments.","PeriodicalId":372317,"journal":{"name":"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)","volume":" 32","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Microknife using ultrasonic vibration\",\"authors\":\"F. Arai, T. Amano, T. Fukuda, H. Satoh\",\"doi\":\"10.1109/MHS.2000.903312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this research is to develop a minute size knife for cutting of minute objects such as cells. We report on a microknife that cuts the object by using ultrasonic vibration of a sharp needle. We employed a multilayer piezoelectric actuator for generating the ultrasonic vibration for cutting. Also, we made a tactile sensor for the microknife by using PZT thin film made by the hydrothermal method. We evaluated the cutting performance and the tactile sensor by experiments.\",\"PeriodicalId\":372317,\"journal\":{\"name\":\"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)\",\"volume\":\" 32\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2000.903312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2000.903312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The purpose of this research is to develop a minute size knife for cutting of minute objects such as cells. We report on a microknife that cuts the object by using ultrasonic vibration of a sharp needle. We employed a multilayer piezoelectric actuator for generating the ultrasonic vibration for cutting. Also, we made a tactile sensor for the microknife by using PZT thin film made by the hydrothermal method. We evaluated the cutting performance and the tactile sensor by experiments.