M. Shafique, Semeen Rehman, Pau Vilimelis Aceituno, J. Henkel
{"title":"利用程序级屏蔽和错误传播进行约束可靠性优化","authors":"M. Shafique, Semeen Rehman, Pau Vilimelis Aceituno, J. Henkel","doi":"10.1145/2463209.2488755","DOIUrl":null,"url":null,"abstract":"Since embedded systems design involves stringent design constraints, designing a system for reliability requires optimization under tolerable overhead constraints. This paper presents a novel reliability-driven compilation scheme for software program reliability optimization under tolerable overhead constraints. Our scheme exploits program-level error masking and propagation properties to perform reliability-driven prioritization of instructions and selective protection during compilation. To enable this, we develop statistical models for estimating error masking and propagation probabilities. Our scheme provides significant improvement in reliability efficiency (avg. 30%-60%) compared to state-of-the-art program-level protection schemes.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"8 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Exploiting program-level masking and error propagation for constrained reliability optimization\",\"authors\":\"M. Shafique, Semeen Rehman, Pau Vilimelis Aceituno, J. Henkel\",\"doi\":\"10.1145/2463209.2488755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since embedded systems design involves stringent design constraints, designing a system for reliability requires optimization under tolerable overhead constraints. This paper presents a novel reliability-driven compilation scheme for software program reliability optimization under tolerable overhead constraints. Our scheme exploits program-level error masking and propagation properties to perform reliability-driven prioritization of instructions and selective protection during compilation. To enable this, we develop statistical models for estimating error masking and propagation probabilities. Our scheme provides significant improvement in reliability efficiency (avg. 30%-60%) compared to state-of-the-art program-level protection schemes.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"8 24\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting program-level masking and error propagation for constrained reliability optimization
Since embedded systems design involves stringent design constraints, designing a system for reliability requires optimization under tolerable overhead constraints. This paper presents a novel reliability-driven compilation scheme for software program reliability optimization under tolerable overhead constraints. Our scheme exploits program-level error masking and propagation properties to perform reliability-driven prioritization of instructions and selective protection during compilation. To enable this, we develop statistical models for estimating error masking and propagation probabilities. Our scheme provides significant improvement in reliability efficiency (avg. 30%-60%) compared to state-of-the-art program-level protection schemes.