通过调度和重新计算最小化对非易失性内存的写入活动

J. Hu, C. Xue, Wei-Che Tseng, Qingfeng Zhuge, E. Sha
{"title":"通过调度和重新计算最小化对非易失性内存的写入活动","authors":"J. Hu, C. Xue, Wei-Che Tseng, Qingfeng Zhuge, E. Sha","doi":"10.1109/SASP.2010.5521139","DOIUrl":null,"url":null,"abstract":"Non-volatile memories, such as flash memory, Phase Change Memory (PCM), and Magnetic Random Access Memory (MRAM), have many desirable characteristics for embedded DSP systems to employ them as main memory. These characteristics include low-cost, shock-resistivity, non-volatility, power-economy and high density. However, there are two common challenges we need to answer before we can apply non-volatile memory as main memory practically. First, non-volatile memory has limited write/erase cycles compared to DRAM. Second, a write operation is slower than a read operation on non-volatile memory. These two challenges can be answered by reducing the number of write activities on non-volatile main memory. In this paper, we propose two optimization techniques, write-aware scheduling and recomputation, to minimize write activities on non-volatile memory. With the proposed techniques, we can both speed up the completion time of programs and extend non-volatile memory's lifetime. The experimental results show that the proposed techniques can reduce the number of write activities on non-volatile memory by 55.71% on average. Thus, the lifetime of non-volatile memory is extend to 2.5 times as long as before on average. The completion time of programs can be reduced by 55.32% on systems with NOR flash memory and by 40.69% on systems with NAND flash memory on average.","PeriodicalId":119893,"journal":{"name":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Minimizing write activities to non-volatile memory via scheduling and recomputation\",\"authors\":\"J. Hu, C. Xue, Wei-Che Tseng, Qingfeng Zhuge, E. Sha\",\"doi\":\"10.1109/SASP.2010.5521139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-volatile memories, such as flash memory, Phase Change Memory (PCM), and Magnetic Random Access Memory (MRAM), have many desirable characteristics for embedded DSP systems to employ them as main memory. These characteristics include low-cost, shock-resistivity, non-volatility, power-economy and high density. However, there are two common challenges we need to answer before we can apply non-volatile memory as main memory practically. First, non-volatile memory has limited write/erase cycles compared to DRAM. Second, a write operation is slower than a read operation on non-volatile memory. These two challenges can be answered by reducing the number of write activities on non-volatile main memory. In this paper, we propose two optimization techniques, write-aware scheduling and recomputation, to minimize write activities on non-volatile memory. With the proposed techniques, we can both speed up the completion time of programs and extend non-volatile memory's lifetime. The experimental results show that the proposed techniques can reduce the number of write activities on non-volatile memory by 55.71% on average. Thus, the lifetime of non-volatile memory is extend to 2.5 times as long as before on average. The completion time of programs can be reduced by 55.32% on systems with NOR flash memory and by 40.69% on systems with NAND flash memory on average.\",\"PeriodicalId\":119893,\"journal\":{\"name\":\"2010 IEEE 8th Symposium on Application Specific Processors (SASP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 8th Symposium on Application Specific Processors (SASP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASP.2010.5521139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2010.5521139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

非易失性存储器,如闪存、相变存储器(PCM)和磁随机存取存储器(MRAM),具有嵌入式DSP系统将其用作主存储器的许多理想特性。这些特性包括低成本、耐冲击、不挥发、节能和高密度。然而,在实际应用非易失性存储器作为主存储器之前,我们需要解决两个共同的挑战。首先,与DRAM相比,非易失性存储器具有有限的写/擦除周期。其次,在非易失性存储器上,写操作比读操作慢。这两个挑战可以通过减少非易失性主存储器上的写活动数量来解决。在本文中,我们提出了两种优化技术,写感知调度和重计算,以减少在非易失性存储器上的写活动。利用所提出的技术,我们既可以加快程序的完成时间,又可以延长非易失性存储器的使用寿命。实验结果表明,该方法可将非易失性存储器上的写操作次数平均减少55.71%。因此,非易失性存储器的寿命平均延长到原来的2.5倍。在使用NOR闪存的系统上,程序完成时间平均缩短55.32%,在使用NAND闪存的系统上,程序完成时间平均缩短40.69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimizing write activities to non-volatile memory via scheduling and recomputation
Non-volatile memories, such as flash memory, Phase Change Memory (PCM), and Magnetic Random Access Memory (MRAM), have many desirable characteristics for embedded DSP systems to employ them as main memory. These characteristics include low-cost, shock-resistivity, non-volatility, power-economy and high density. However, there are two common challenges we need to answer before we can apply non-volatile memory as main memory practically. First, non-volatile memory has limited write/erase cycles compared to DRAM. Second, a write operation is slower than a read operation on non-volatile memory. These two challenges can be answered by reducing the number of write activities on non-volatile main memory. In this paper, we propose two optimization techniques, write-aware scheduling and recomputation, to minimize write activities on non-volatile memory. With the proposed techniques, we can both speed up the completion time of programs and extend non-volatile memory's lifetime. The experimental results show that the proposed techniques can reduce the number of write activities on non-volatile memory by 55.71% on average. Thus, the lifetime of non-volatile memory is extend to 2.5 times as long as before on average. The completion time of programs can be reduced by 55.32% on systems with NOR flash memory and by 40.69% on systems with NAND flash memory on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信