随机事件的分布

K. Podgórski, I. Rychlik
{"title":"随机事件的分布","authors":"K. Podgórski, I. Rychlik","doi":"10.1109/EBCCSP.2016.7605277","DOIUrl":null,"url":null,"abstract":"We discuss the generalized Rice formula approach to deriving long-run distributions of characteristics defined at random events of a stochastic process or field. The approach stems from the same principle originally introduced by Rice for the level crossing intensity in a random signal and we review its extensions to more general contexts. Events are defined on random surfaces through crossing levels of (multivariate) stochastic fields. We also account for the dynamics of spatial-temporal fields using observed velocities. Extensions beyond the Gaussian model are shown and models for sampling from the level crossing distributions are presented. The importance of these generalizations for applications is illustrated through examples.","PeriodicalId":411767,"journal":{"name":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","volume":"22 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributions at random events\",\"authors\":\"K. Podgórski, I. Rychlik\",\"doi\":\"10.1109/EBCCSP.2016.7605277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the generalized Rice formula approach to deriving long-run distributions of characteristics defined at random events of a stochastic process or field. The approach stems from the same principle originally introduced by Rice for the level crossing intensity in a random signal and we review its extensions to more general contexts. Events are defined on random surfaces through crossing levels of (multivariate) stochastic fields. We also account for the dynamics of spatial-temporal fields using observed velocities. Extensions beyond the Gaussian model are shown and models for sampling from the level crossing distributions are presented. The importance of these generalizations for applications is illustrated through examples.\",\"PeriodicalId\":411767,\"journal\":{\"name\":\"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)\",\"volume\":\"22 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBCCSP.2016.7605277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP.2016.7605277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了推导随机过程或场的随机事件所定义的特征的长期分布的广义Rice公式方法。该方法源于Rice最初为随机信号中的水平交叉强度引入的相同原理,我们回顾了其在更一般情况下的扩展。事件是通过(多元)随机场的交叉水平在随机表面上定义的。我们还利用观测到的速度来解释时空场的动力学。给出了高斯模型以外的扩展,并给出了从水平交叉分布中抽样的模型。通过示例说明了这些概括对应用程序的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributions at random events
We discuss the generalized Rice formula approach to deriving long-run distributions of characteristics defined at random events of a stochastic process or field. The approach stems from the same principle originally introduced by Rice for the level crossing intensity in a random signal and we review its extensions to more general contexts. Events are defined on random surfaces through crossing levels of (multivariate) stochastic fields. We also account for the dynamics of spatial-temporal fields using observed velocities. Extensions beyond the Gaussian model are shown and models for sampling from the level crossing distributions are presented. The importance of these generalizations for applications is illustrated through examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信