高光谱图像非线性解混的正交匹配追踪

N. Raksuntorn, Q. Du, N. Younan, Wei Li
{"title":"高光谱图像非线性解混的正交匹配追踪","authors":"N. Raksuntorn, Q. Du, N. Younan, Wei Li","doi":"10.1109/ChinaSIP.2014.6889222","DOIUrl":null,"url":null,"abstract":"A simple but effective nonlinear mixture model is adopted for nonlinear unmixing of hyperspectral imagery, where the multiplication of each pair of endmembers results in a virtual endmember, representing multiple scattering effect during pixel construction process. The analysis is followed by linear unmixing for abundance estimation. Due to a large number of nonlinear terms being added in an unknown environment, the following abundance estimation may contain some error if most of endmembers do not really participate in the mixture of a pixel. Thus, sparse unmixing is applied to search the actual endmember set per pixel. The orthogonal matching pursuit (OMP) is adopted for this purpose. It can offer comparable results to the previously developed endmember variable linear mixture model (EVLMM) with much lower computational cost.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"4 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Orthogonal matching pursuit for nonlinear unmixing of hyperspectral imagery\",\"authors\":\"N. Raksuntorn, Q. Du, N. Younan, Wei Li\",\"doi\":\"10.1109/ChinaSIP.2014.6889222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple but effective nonlinear mixture model is adopted for nonlinear unmixing of hyperspectral imagery, where the multiplication of each pair of endmembers results in a virtual endmember, representing multiple scattering effect during pixel construction process. The analysis is followed by linear unmixing for abundance estimation. Due to a large number of nonlinear terms being added in an unknown environment, the following abundance estimation may contain some error if most of endmembers do not really participate in the mixture of a pixel. Thus, sparse unmixing is applied to search the actual endmember set per pixel. The orthogonal matching pursuit (OMP) is adopted for this purpose. It can offer comparable results to the previously developed endmember variable linear mixture model (EVLMM) with much lower computational cost.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"4 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用简单而有效的非线性混合模型对高光谱图像进行非线性解混,每对端元相乘得到一个虚端元,表示像元构建过程中的多重散射效应。分析之后进行线性解混以估计丰度。由于在未知环境中加入了大量的非线性项,如果大多数端元并不真正参与到像素的混合中,那么接下来的丰度估计可能会包含一些误差。因此,稀疏解混应用于搜索每像素的实际端元集。为此采用正交匹配追踪(OMP)。它可以提供与先前开发的端元可变线性混合模型(EVLMM)相当的结果,且计算成本低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal matching pursuit for nonlinear unmixing of hyperspectral imagery
A simple but effective nonlinear mixture model is adopted for nonlinear unmixing of hyperspectral imagery, where the multiplication of each pair of endmembers results in a virtual endmember, representing multiple scattering effect during pixel construction process. The analysis is followed by linear unmixing for abundance estimation. Due to a large number of nonlinear terms being added in an unknown environment, the following abundance estimation may contain some error if most of endmembers do not really participate in the mixture of a pixel. Thus, sparse unmixing is applied to search the actual endmember set per pixel. The orthogonal matching pursuit (OMP) is adopted for this purpose. It can offer comparable results to the previously developed endmember variable linear mixture model (EVLMM) with much lower computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信