{"title":"食欲素系统与禽类肌肉线粒体","authors":"K. Lassiter, S. Dridi","doi":"10.5772/INTECHOPEN.85177","DOIUrl":null,"url":null,"abstract":"In mammals, orexin A and B (also known as hypocretin 1 and 2) are two orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G-protein-coupled receptors, orexin receptors 1/2, and have been implicated in the regulation of several physiological processes. However, the physiological roles of orexin are not well defined in avian (non-mammalian vertebrate) species. Recently, we made a breakthrough by identifying that orexin and its related receptors 1/2 (ORXR1/2) are expressed in avian muscle tissue and cell line, and appears to be a secretory protein. Functional in vitro studies showed that orexin A and B differentially regulated expression of the orexin system, suggesting that orexins might have autocrine, paracrine, and/or endocrine roles. Administration of recombinant orexin modulated mitochondrial biogenesis, dynamics, function, and bioenergetics. In this chapter, we include a brief overview of the (patho) physiological role of orexin, comparative findings between mammalian and avian orexin, and in-depth analysis of orexin’s action on avian muscle mitochondria.","PeriodicalId":432485,"journal":{"name":"Muscle Cells - Recent Advances and Future Perspectives","volume":"11 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Orexin System and Avian Muscle Mitochondria\",\"authors\":\"K. Lassiter, S. Dridi\",\"doi\":\"10.5772/INTECHOPEN.85177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mammals, orexin A and B (also known as hypocretin 1 and 2) are two orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G-protein-coupled receptors, orexin receptors 1/2, and have been implicated in the regulation of several physiological processes. However, the physiological roles of orexin are not well defined in avian (non-mammalian vertebrate) species. Recently, we made a breakthrough by identifying that orexin and its related receptors 1/2 (ORXR1/2) are expressed in avian muscle tissue and cell line, and appears to be a secretory protein. Functional in vitro studies showed that orexin A and B differentially regulated expression of the orexin system, suggesting that orexins might have autocrine, paracrine, and/or endocrine roles. Administration of recombinant orexin modulated mitochondrial biogenesis, dynamics, function, and bioenergetics. In this chapter, we include a brief overview of the (patho) physiological role of orexin, comparative findings between mammalian and avian orexin, and in-depth analysis of orexin’s action on avian muscle mitochondria.\",\"PeriodicalId\":432485,\"journal\":{\"name\":\"Muscle Cells - Recent Advances and Future Perspectives\",\"volume\":\"11 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muscle Cells - Recent Advances and Future Perspectives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.85177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muscle Cells - Recent Advances and Future Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In mammals, orexin A and B (also known as hypocretin 1 and 2) are two orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G-protein-coupled receptors, orexin receptors 1/2, and have been implicated in the regulation of several physiological processes. However, the physiological roles of orexin are not well defined in avian (non-mammalian vertebrate) species. Recently, we made a breakthrough by identifying that orexin and its related receptors 1/2 (ORXR1/2) are expressed in avian muscle tissue and cell line, and appears to be a secretory protein. Functional in vitro studies showed that orexin A and B differentially regulated expression of the orexin system, suggesting that orexins might have autocrine, paracrine, and/or endocrine roles. Administration of recombinant orexin modulated mitochondrial biogenesis, dynamics, function, and bioenergetics. In this chapter, we include a brief overview of the (patho) physiological role of orexin, comparative findings between mammalian and avian orexin, and in-depth analysis of orexin’s action on avian muscle mitochondria.