主电力机车变频驱动的神经网络控制

Yaroslav Kyrylenko, Yurij Kutovoj, I. Obruch, Tatiana Kunchenko
{"title":"主电力机车变频驱动的神经网络控制","authors":"Yaroslav Kyrylenko, Yurij Kutovoj, I. Obruch, Tatiana Kunchenko","doi":"10.1109/PAEP49887.2020.9240880","DOIUrl":null,"url":null,"abstract":"The paper presents the results of the development and investigations of an intelligent control system for an electric drive (ED) of the main-line electric locomotive DS3. It is shown that the use of methods of genetic algorithms for training and structural optimization of neural systems makes it possible to synthesize the control law excluding the self-oscillating process arising from the nonlinearity of the “friction pair” type load. The developed systems have a single easily realizable feedback on the speed of the motor which does not create difficulties in physical realization.","PeriodicalId":240191,"journal":{"name":"2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP)","volume":"45 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural Network Control of a Frequency-Regulated Electric Drive of a Main Electric Locomotive\",\"authors\":\"Yaroslav Kyrylenko, Yurij Kutovoj, I. Obruch, Tatiana Kunchenko\",\"doi\":\"10.1109/PAEP49887.2020.9240880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of the development and investigations of an intelligent control system for an electric drive (ED) of the main-line electric locomotive DS3. It is shown that the use of methods of genetic algorithms for training and structural optimization of neural systems makes it possible to synthesize the control law excluding the self-oscillating process arising from the nonlinearity of the “friction pair” type load. The developed systems have a single easily realizable feedback on the speed of the motor which does not create difficulties in physical realization.\",\"PeriodicalId\":240191,\"journal\":{\"name\":\"2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP)\",\"volume\":\"45 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAEP49887.2020.9240880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAEP49887.2020.9240880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了DS3型干线电力机车电传动智能控制系统的研制和研究成果。结果表明,利用遗传算法的方法对神经系统进行训练和结构优化,可以综合出不考虑“摩擦副”型载荷非线性引起的自振荡过程的控制律。所开发的系统对电机的速度有一个单一的易于实现的反馈,这不会在物理实现中造成困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Control of a Frequency-Regulated Electric Drive of a Main Electric Locomotive
The paper presents the results of the development and investigations of an intelligent control system for an electric drive (ED) of the main-line electric locomotive DS3. It is shown that the use of methods of genetic algorithms for training and structural optimization of neural systems makes it possible to synthesize the control law excluding the self-oscillating process arising from the nonlinearity of the “friction pair” type load. The developed systems have a single easily realizable feedback on the speed of the motor which does not create difficulties in physical realization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信