{"title":"细菌末端氧化酶。","authors":"P Jurtshuk, T J Mueller, W C Acord","doi":"10.3109/10408417509108757","DOIUrl":null,"url":null,"abstract":"AbstractOxidases, as such, regardless of their source, represent a diverse and complex series of enzymes. What they have in common is the ability to react with molecular oxygen, activate it chemically (in a manner which is still not understood), and utilize the “activated atoms of oxygen” primarily as electron acceptors. Should the “activated oxygen atoms” be used directly for oxygenating substrate molecules, such as hydrocarbons, then according to the conventions used today, the enzyme is termed an oxygenase rather than an oxidase. The subject of oxygenases is far too complex to be reviewed in any detailed treatment of oxidases. All oxidases serve as electron acceptors for specific dehydrogenation reactions that are carried out by the multitude of dehydrogenases that are found in tissues as well as in bacteria. The major end product that results from the oxidase reaction is either H2O or H2O2. The oxidases can be (1) simple flavoprotein-containing enzymes, such as the glucose oxidase or the D- and L-amin...","PeriodicalId":75751,"journal":{"name":"CRC critical reviews in microbiology","volume":"3 4","pages":"399-468"},"PeriodicalIF":0.0000,"publicationDate":"1975-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10408417509108757","citationCount":"84","resultStr":"{\"title\":\"Bacterial terminal oxidases.\",\"authors\":\"P Jurtshuk, T J Mueller, W C Acord\",\"doi\":\"10.3109/10408417509108757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractOxidases, as such, regardless of their source, represent a diverse and complex series of enzymes. What they have in common is the ability to react with molecular oxygen, activate it chemically (in a manner which is still not understood), and utilize the “activated atoms of oxygen” primarily as electron acceptors. Should the “activated oxygen atoms” be used directly for oxygenating substrate molecules, such as hydrocarbons, then according to the conventions used today, the enzyme is termed an oxygenase rather than an oxidase. The subject of oxygenases is far too complex to be reviewed in any detailed treatment of oxidases. All oxidases serve as electron acceptors for specific dehydrogenation reactions that are carried out by the multitude of dehydrogenases that are found in tissues as well as in bacteria. The major end product that results from the oxidase reaction is either H2O or H2O2. The oxidases can be (1) simple flavoprotein-containing enzymes, such as the glucose oxidase or the D- and L-amin...\",\"PeriodicalId\":75751,\"journal\":{\"name\":\"CRC critical reviews in microbiology\",\"volume\":\"3 4\",\"pages\":\"399-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10408417509108757\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRC critical reviews in microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10408417509108757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRC critical reviews in microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10408417509108757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AbstractOxidases, as such, regardless of their source, represent a diverse and complex series of enzymes. What they have in common is the ability to react with molecular oxygen, activate it chemically (in a manner which is still not understood), and utilize the “activated atoms of oxygen” primarily as electron acceptors. Should the “activated oxygen atoms” be used directly for oxygenating substrate molecules, such as hydrocarbons, then according to the conventions used today, the enzyme is termed an oxygenase rather than an oxidase. The subject of oxygenases is far too complex to be reviewed in any detailed treatment of oxidases. All oxidases serve as electron acceptors for specific dehydrogenation reactions that are carried out by the multitude of dehydrogenases that are found in tissues as well as in bacteria. The major end product that results from the oxidase reaction is either H2O or H2O2. The oxidases can be (1) simple flavoprotein-containing enzymes, such as the glucose oxidase or the D- and L-amin...