{"title":"有限生成的乘法群元素的同时加权和","authors":"R. Tijdeman , Lianxiang Wang","doi":"10.1016/S1385-7258(88)80028-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>{G<sub>j</sub>}<sub>jεJ</sub></em> be a finite set of finitely generated subgroups of the multiplicative group of complex numbers <em>C</em><sup>x</sup>. Write <em>H=∩ <sub>jεJ</sub> G<sub>j</sub></em>. Let <em>n</em> be a positive integer and <em>a<sub>ij</sub></em> a complex number for <em>i</em> = 1, ..., <em>n</em> and <em>j ε J</em>. Then there exists a set <em>W</em> with the following properties. The cardinality of <em>W</em> depends only on <em>{G<sub>j</sub>}<sub>jεJ</sub></em> and <em>n</em>. If, for each <em>jεJ, α</em> has a representation <em>α = Σ <sub>i</sub><sup>n</sup> = <sub>1</sub>a <sub>ij</sub>g<sub>ij</sub></em> in elements <em>g<sub>ij</sub></em> of <em>G<sub>j</sub></em>, then α has a representation <em>a= Σ<sub>k=1</sub><sup>n</sup> w<sub>k</sub>h<sub>k</sub></em> with <em>w<sub>k</sub>εW, h<sub>k</sub> εH</em> for <em>k = 1,..., n</em>. The theorem in this note gives information on such representations.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 2","pages":"Pages 205-209"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80028-3","citationCount":"0","resultStr":"{\"title\":\"Simultaneous weighted sums of elements of finitely generated multiplicative groups\",\"authors\":\"R. Tijdeman , Lianxiang Wang\",\"doi\":\"10.1016/S1385-7258(88)80028-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>{G<sub>j</sub>}<sub>jεJ</sub></em> be a finite set of finitely generated subgroups of the multiplicative group of complex numbers <em>C</em><sup>x</sup>. Write <em>H=∩ <sub>jεJ</sub> G<sub>j</sub></em>. Let <em>n</em> be a positive integer and <em>a<sub>ij</sub></em> a complex number for <em>i</em> = 1, ..., <em>n</em> and <em>j ε J</em>. Then there exists a set <em>W</em> with the following properties. The cardinality of <em>W</em> depends only on <em>{G<sub>j</sub>}<sub>jεJ</sub></em> and <em>n</em>. If, for each <em>jεJ, α</em> has a representation <em>α = Σ <sub>i</sub><sup>n</sup> = <sub>1</sub>a <sub>ij</sub>g<sub>ij</sub></em> in elements <em>g<sub>ij</sub></em> of <em>G<sub>j</sub></em>, then α has a representation <em>a= Σ<sub>k=1</sub><sup>n</sup> w<sub>k</sub>h<sub>k</sub></em> with <em>w<sub>k</sub>εW, h<sub>k</sub> εH</em> for <em>k = 1,..., n</em>. The theorem in this note gives information on such representations.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 2\",\"pages\":\"Pages 205-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80028-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725888800283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设{Gj}jεJ是复数的乘积群Cx的有限生成子群的有限集合。写H=∩jεJ Gj。设n为正整数,aij为复数,令i = 1,…, n和j ε j,则存在一个集W,它具有以下性质:W的cardinality仅依赖于{Gj}jεJ和n。如果对于每个jεJ, α在Gj的元素gij中具有α = Σ in = 1a ijgij的表示,则α具有a= Σk=1n wkhk与wkεW, hk εH对于k=1,…本文中的定理给出了这种表示的信息。
Simultaneous weighted sums of elements of finitely generated multiplicative groups
Let {Gj}jεJ be a finite set of finitely generated subgroups of the multiplicative group of complex numbers Cx. Write H=∩ jεJ Gj. Let n be a positive integer and aij a complex number for i = 1, ..., n and j ε J. Then there exists a set W with the following properties. The cardinality of W depends only on {Gj}jεJ and n. If, for each jεJ, α has a representation α = Σ in = 1a ijgij in elements gij of Gj, then α has a representation a= Σk=1n wkhk with wkεW, hk εH for k = 1,..., n. The theorem in this note gives information on such representations.