紧黎曼曲面上的分支仿射和射影结构

John T. Masterson
{"title":"紧黎曼曲面上的分支仿射和射影结构","authors":"John T. Masterson","doi":"10.1016/S1385-7258(88)80010-6","DOIUrl":null,"url":null,"abstract":"<div><p>It is first established that there exist linear manifolds of branched affine structures having certain nonpolar branch divisors and simple polar divisors on an arbitrary compact Riemann surface <em>M</em> of genus <em>g≤1</em>. When <em>≥2</em>, it is shown that these linear manifolds form a complex analytic vector bundle over the manifold of simple polar divisors on <em>M</em>. When <em>g=1</em>, elliptic functions are used to construct certain projective structures on <em>M</em>. A partial determination is made as to which of these projective structures are affine and which are not.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 3","pages":"Pages 309-319"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80010-6","citationCount":"1","resultStr":"{\"title\":\"Branched affine and projective structures on compact Riemann surfaces\",\"authors\":\"John T. Masterson\",\"doi\":\"10.1016/S1385-7258(88)80010-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is first established that there exist linear manifolds of branched affine structures having certain nonpolar branch divisors and simple polar divisors on an arbitrary compact Riemann surface <em>M</em> of genus <em>g≤1</em>. When <em>≥2</em>, it is shown that these linear manifolds form a complex analytic vector bundle over the manifold of simple polar divisors on <em>M</em>. When <em>g=1</em>, elliptic functions are used to construct certain projective structures on <em>M</em>. A partial determination is made as to which of these projective structures are affine and which are not.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 3\",\"pages\":\"Pages 309-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80010-6\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725888800106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

首先证明了在g≤1的任意紧致黎曼曲面M上存在具有一定非极性分支因子和简单极性因子的支仿射结构的线性流形。当≥2时,证明了这些线性流形在m上的简单极因子流形上形成一个复解析向量束。当g=1时,利用椭圆函数在m上构造某些射影结构,并对这些射影结构中哪些是仿射的,哪些不是仿射的作了部分判定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Branched affine and projective structures on compact Riemann surfaces

It is first established that there exist linear manifolds of branched affine structures having certain nonpolar branch divisors and simple polar divisors on an arbitrary compact Riemann surface M of genus g≤1. When ≥2, it is shown that these linear manifolds form a complex analytic vector bundle over the manifold of simple polar divisors on M. When g=1, elliptic functions are used to construct certain projective structures on M. A partial determination is made as to which of these projective structures are affine and which are not.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信