Yao Xiao, Dr. Huan Li, Dr. Yidan Tang, Prof. Bingling Li
{"title":"一种基于双开关结构的通用CRISPR/ cas12a辅助方法检测多类型靶标","authors":"Yao Xiao, Dr. Huan Li, Dr. Yidan Tang, Prof. Bingling Li","doi":"10.1002/anse.202300018","DOIUrl":null,"url":null,"abstract":"<p>Recent years, molecular detection technology has been playing an unprecedentedly important role in disease prevention and public health. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems such as CRISPR/Cas12a and CRISPR/Cas13a, have been increasingly used in the detection of nucleic acid molecules because of its collateral cleavage ability in recent years. Herein, we develop a universal CRISPR/Cas12a-assisted methodology based on a nucleic acid duplex switch structure that can distinguish different categories of targets, such as DNA, RNA and small molecules. It is worth noting that for nucleic acid detection, this method can significantly identify single base substitutions with high specificity, compared with other Cas12a-assisted biosensing systems. The experimental results suggest that this method has great specificity for different targets, promising to be applied to rapid molecular diagnosis.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Universal CRISPR/Cas12a-Assisted Methodology Based on Duplex Switch Structure to Detect Multiple Types of Targets\",\"authors\":\"Yao Xiao, Dr. Huan Li, Dr. Yidan Tang, Prof. Bingling Li\",\"doi\":\"10.1002/anse.202300018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent years, molecular detection technology has been playing an unprecedentedly important role in disease prevention and public health. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems such as CRISPR/Cas12a and CRISPR/Cas13a, have been increasingly used in the detection of nucleic acid molecules because of its collateral cleavage ability in recent years. Herein, we develop a universal CRISPR/Cas12a-assisted methodology based on a nucleic acid duplex switch structure that can distinguish different categories of targets, such as DNA, RNA and small molecules. It is worth noting that for nucleic acid detection, this method can significantly identify single base substitutions with high specificity, compared with other Cas12a-assisted biosensing systems. The experimental results suggest that this method has great specificity for different targets, promising to be applied to rapid molecular diagnosis.</p>\",\"PeriodicalId\":72192,\"journal\":{\"name\":\"Analysis & sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anse.202300018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202300018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
近年来,分子检测技术在疾病预防和公共卫生领域发挥着前所未有的重要作用。近年来,CRISPR/Cas12a和CRISPR/Cas13a等聚集规则间隔短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeat, CRISPR)系统由于其侧支切割能力在核酸分子检测中得到越来越多的应用。在此,我们开发了一种基于核酸双开关结构的通用CRISPR/ cas12a辅助方法,该方法可以区分不同类别的靶标,如DNA, RNA和小分子。值得注意的是,对于核酸检测,与其他cas12a辅助的生物传感系统相比,该方法可以显著识别单碱基取代,特异性高。实验结果表明,该方法对不同靶点具有很强的特异性,有望应用于快速分子诊断。
A Universal CRISPR/Cas12a-Assisted Methodology Based on Duplex Switch Structure to Detect Multiple Types of Targets
Recent years, molecular detection technology has been playing an unprecedentedly important role in disease prevention and public health. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems such as CRISPR/Cas12a and CRISPR/Cas13a, have been increasingly used in the detection of nucleic acid molecules because of its collateral cleavage ability in recent years. Herein, we develop a universal CRISPR/Cas12a-assisted methodology based on a nucleic acid duplex switch structure that can distinguish different categories of targets, such as DNA, RNA and small molecules. It is worth noting that for nucleic acid detection, this method can significantly identify single base substitutions with high specificity, compared with other Cas12a-assisted biosensing systems. The experimental results suggest that this method has great specificity for different targets, promising to be applied to rapid molecular diagnosis.