维诺格拉多夫中值定理旧论点的解耦解释

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-11-12 DOI:10.1112/mtk.12231
Brian Cook, Kevin Hughes, Zane Kun Li, Akshat Mudgal, Olivier Robert, Po-Lam Yung
{"title":"维诺格拉多夫中值定理旧论点的解耦解释","authors":"Brian Cook,&nbsp;Kevin Hughes,&nbsp;Zane Kun Li,&nbsp;Akshat Mudgal,&nbsp;Olivier Robert,&nbsp;Po-Lam Yung","doi":"10.1112/mtk.12231","DOIUrl":null,"url":null,"abstract":"<p>We interpret into decoupling language a refinement of a 1973 argument due to Karatsuba on Vinogradov's mean value theorem. The main goal of our argument is to answer what precisely solution counting in older partial progress on Vinogradov's mean value theorem corresponds to in Fourier decoupling theory.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12231","citationCount":"2","resultStr":"{\"title\":\"A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem\",\"authors\":\"Brian Cook,&nbsp;Kevin Hughes,&nbsp;Zane Kun Li,&nbsp;Akshat Mudgal,&nbsp;Olivier Robert,&nbsp;Po-Lam Yung\",\"doi\":\"10.1112/mtk.12231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We interpret into decoupling language a refinement of a 1973 argument due to Karatsuba on Vinogradov's mean value theorem. The main goal of our argument is to answer what precisely solution counting in older partial progress on Vinogradov's mean value theorem corresponds to in Fourier decoupling theory.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12231\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12231\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12231","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们将Karatsuba在1973年关于维诺格拉多夫中值定理的论证的改进解释为解耦语言。我们讨论的主要目标是回答维诺格拉多夫中值定理的旧部分进展中的精确解计数在傅里叶解耦理论中对应的是什么。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem

A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem

We interpret into decoupling language a refinement of a 1973 argument due to Karatsuba on Vinogradov's mean value theorem. The main goal of our argument is to answer what precisely solution counting in older partial progress on Vinogradov's mean value theorem corresponds to in Fourier decoupling theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信