Dr. Yuanting Li, Mengmeng Zhang, Zhouya Wu, Dr. Xiaoli Bao
{"title":"基于Au@Ag-MOFs纳米粒子表面增强拉曼散射的环境水中对氯苯甲醛的灵敏检测","authors":"Dr. Yuanting Li, Mengmeng Zhang, Zhouya Wu, Dr. Xiaoli Bao","doi":"10.1002/anse.202200108","DOIUrl":null,"url":null,"abstract":"<p>Surface enhanced Raman scattering (SERS) is difficult to detect molecules with weak adsorption, like aldehydes. Herein, we fabricated core-shell Au@Ag-MOFs nanoparticles as SERS substrate. The shell can be controllably synthesized, with the thickness about 3 nm. After the morphology and SERS activity characterization, Au@Ag-MOFs were employed to sensitive and label-free detect <i>p</i>-chlorobenzaldehyde (PCB) in water samples. The pore structure and large surface area of Ag-MOFs shell results more adsorption of PCB, dragging more molecules to “hot spots” area. The abundant amino group in Ag-MOFs allows the occurrence of Schiff base reaction with aldehyde group in PCB. Taking the synergistic effect of both physical and chemical enhancement, SERS signals of PCB were greatly boosted. The method showed good linearity between 5.0×10<sup>−12</sup> M to 1.0×10<sup>−8</sup> M for PCB with the limit of detection (LOD) down to 3.3×10<sup>−12</sup> M. The proposed method has great potential to be a reliable analytical strategy for aldehydes in real samples.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"3 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive Detection of p-Chlorobenzaldehyde in Environmental Water Based on Au@Ag-MOFs Nanoparticle by Surface-Enhanced Raman Scattering\",\"authors\":\"Dr. Yuanting Li, Mengmeng Zhang, Zhouya Wu, Dr. Xiaoli Bao\",\"doi\":\"10.1002/anse.202200108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surface enhanced Raman scattering (SERS) is difficult to detect molecules with weak adsorption, like aldehydes. Herein, we fabricated core-shell Au@Ag-MOFs nanoparticles as SERS substrate. The shell can be controllably synthesized, with the thickness about 3 nm. After the morphology and SERS activity characterization, Au@Ag-MOFs were employed to sensitive and label-free detect <i>p</i>-chlorobenzaldehyde (PCB) in water samples. The pore structure and large surface area of Ag-MOFs shell results more adsorption of PCB, dragging more molecules to “hot spots” area. The abundant amino group in Ag-MOFs allows the occurrence of Schiff base reaction with aldehyde group in PCB. Taking the synergistic effect of both physical and chemical enhancement, SERS signals of PCB were greatly boosted. The method showed good linearity between 5.0×10<sup>−12</sup> M to 1.0×10<sup>−8</sup> M for PCB with the limit of detection (LOD) down to 3.3×10<sup>−12</sup> M. The proposed method has great potential to be a reliable analytical strategy for aldehydes in real samples.</p>\",\"PeriodicalId\":72192,\"journal\":{\"name\":\"Analysis & sensing\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anse.202200108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202200108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
表面增强拉曼散射(SERS)很难检测到吸附较弱的分子,如醛类分子。本文制备了核壳纳米粒子Au@Ag-MOFs作为SERS底物。壳层可可控合成,厚度约为3nm。在完成形貌和SERS活性表征后,利用Au@Ag-MOFs对水样中的对氯苯甲醛(PCB)进行灵敏无标记检测。ag - mof壳的孔隙结构和较大的表面积使得PCB吸附更多,将更多分子拖到“热点”区域。ag - mof中丰富的氨基使其能与PCB中的醛基发生席夫碱反应。在物理增强和化学增强的协同作用下,大大增强了PCB的SERS信号。该方法在5.0×10−12 M ~ 1.0×10−8 M之间线性良好,检出限(LOD)低至3.3×10−12 M。该方法有很大的潜力成为实际样品中醛类的可靠分析策略。
Sensitive Detection of p-Chlorobenzaldehyde in Environmental Water Based on Au@Ag-MOFs Nanoparticle by Surface-Enhanced Raman Scattering
Surface enhanced Raman scattering (SERS) is difficult to detect molecules with weak adsorption, like aldehydes. Herein, we fabricated core-shell Au@Ag-MOFs nanoparticles as SERS substrate. The shell can be controllably synthesized, with the thickness about 3 nm. After the morphology and SERS activity characterization, Au@Ag-MOFs were employed to sensitive and label-free detect p-chlorobenzaldehyde (PCB) in water samples. The pore structure and large surface area of Ag-MOFs shell results more adsorption of PCB, dragging more molecules to “hot spots” area. The abundant amino group in Ag-MOFs allows the occurrence of Schiff base reaction with aldehyde group in PCB. Taking the synergistic effect of both physical and chemical enhancement, SERS signals of PCB were greatly boosted. The method showed good linearity between 5.0×10−12 M to 1.0×10−8 M for PCB with the limit of detection (LOD) down to 3.3×10−12 M. The proposed method has great potential to be a reliable analytical strategy for aldehydes in real samples.