基于机器学习算法的糖尿病风险评估与预测框架

Salliah Shafi Bhat , Madhina Banu , Gufran Ahmad Ansari , Venkatesan Selvam
{"title":"基于机器学习算法的糖尿病风险评估与预测框架","authors":"Salliah Shafi Bhat ,&nbsp;Madhina Banu ,&nbsp;Gufran Ahmad Ansari ,&nbsp;Venkatesan Selvam","doi":"10.1016/j.health.2023.100273","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes disease seriously threatens people's health and is becoming more common nowadays. Diabetes Mellitus (DM) is a condition caused by high blood sugar levels, inactivity, unhealthy eating, being overweight, and other factors. This research article analyzed and examined various risk prediction models and algorithms for diabetes, including Type 1, Type 2, and Gestational Diabetes. This study develops several Machine Learning (ML) models for predicting diabetes using various datasets. The process involves producing highly informative features called Feature Engineering (FE). We used the Pima Indian Diabetes Dataset (PIDD) to experiment with and examine the effectiveness of ML models' ability to predict diabetes. Using Python programming, we used three classification algorithms, Logistic Regression, Gradient Boost, and Decision Tree, and combined feature selection techniques among the classification techniques, Decision Tree has the highest accuracy rate (91 %), precision (96 %), recall (92 %), and Fi score (94 %).</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"4 ","pages":"Article 100273"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001405/pdfft?md5=0eb0088277442a491debaaea7ad5d6d2&pid=1-s2.0-S2772442523001405-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A risk assessment and prediction framework for diabetes mellitus using machine learning algorithms\",\"authors\":\"Salliah Shafi Bhat ,&nbsp;Madhina Banu ,&nbsp;Gufran Ahmad Ansari ,&nbsp;Venkatesan Selvam\",\"doi\":\"10.1016/j.health.2023.100273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diabetes disease seriously threatens people's health and is becoming more common nowadays. Diabetes Mellitus (DM) is a condition caused by high blood sugar levels, inactivity, unhealthy eating, being overweight, and other factors. This research article analyzed and examined various risk prediction models and algorithms for diabetes, including Type 1, Type 2, and Gestational Diabetes. This study develops several Machine Learning (ML) models for predicting diabetes using various datasets. The process involves producing highly informative features called Feature Engineering (FE). We used the Pima Indian Diabetes Dataset (PIDD) to experiment with and examine the effectiveness of ML models' ability to predict diabetes. Using Python programming, we used three classification algorithms, Logistic Regression, Gradient Boost, and Decision Tree, and combined feature selection techniques among the classification techniques, Decision Tree has the highest accuracy rate (91 %), precision (96 %), recall (92 %), and Fi score (94 %).</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"4 \",\"pages\":\"Article 100273\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001405/pdfft?md5=0eb0088277442a491debaaea7ad5d6d2&pid=1-s2.0-S2772442523001405-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病严重威胁着人们的身体健康,并且越来越普遍。糖尿病(DM)是一种由高血糖、缺乏运动、不健康饮食、超重和其他因素引起的疾病。这篇研究文章分析和检验了糖尿病的各种风险预测模型和算法,包括1型糖尿病、2型糖尿病和妊娠糖尿病。本研究开发了几种机器学习(ML)模型,用于使用各种数据集预测糖尿病。这个过程包括产生高信息量的特征,称为特征工程(Feature Engineering, FE)。我们使用皮马印第安人糖尿病数据集(PIDD)来试验和检验ML模型预测糖尿病能力的有效性。使用Python编程,采用Logistic回归、梯度提升和决策树三种分类算法,并结合分类技术中的特征选择技术,决策树具有最高的准确率(91%)、精密度(96%)、召回率(92%)和Fi分数(94%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A risk assessment and prediction framework for diabetes mellitus using machine learning algorithms

Diabetes disease seriously threatens people's health and is becoming more common nowadays. Diabetes Mellitus (DM) is a condition caused by high blood sugar levels, inactivity, unhealthy eating, being overweight, and other factors. This research article analyzed and examined various risk prediction models and algorithms for diabetes, including Type 1, Type 2, and Gestational Diabetes. This study develops several Machine Learning (ML) models for predicting diabetes using various datasets. The process involves producing highly informative features called Feature Engineering (FE). We used the Pima Indian Diabetes Dataset (PIDD) to experiment with and examine the effectiveness of ML models' ability to predict diabetes. Using Python programming, we used three classification algorithms, Logistic Regression, Gradient Boost, and Decision Tree, and combined feature selection techniques among the classification techniques, Decision Tree has the highest accuracy rate (91 %), precision (96 %), recall (92 %), and Fi score (94 %).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信