Qilin Zhu, Ahmed S. Elrys, Lijun Liu, Yunxing Wan, Ruoyan Yang, Jinxia Mou, Yunzhong Chen, Yuqin Wang, Juan Liu, Tongbin Zhu, Yanzheng Wu, Shuirong Tang, Lei Meng, Jinbo Zhang, Christoph Müller
{"title":"在热带地区,将酸性森林转化为有管理的人工林通过抑制自养硝化作用和诱导硝酸盐固定来减少土壤氮的流失","authors":"Qilin Zhu, Ahmed S. Elrys, Lijun Liu, Yunxing Wan, Ruoyan Yang, Jinxia Mou, Yunzhong Chen, Yuqin Wang, Juan Liu, Tongbin Zhu, Yanzheng Wu, Shuirong Tang, Lei Meng, Jinbo Zhang, Christoph Müller","doi":"10.1007/s00374-023-01777-7","DOIUrl":null,"url":null,"abstract":"<p>Soil gross nitrogen (N) transformation rates are highly sensitive to land use change. However, understanding the effect of land use change on internal N cycling patterns and its underlying mechanisms in tropical soils remains elusive. Here, four typical land uses including forest (> 400 years), eucalyptus (15 years), rubber (35 years), and paddy field (40 years) plantations in tropical region of China were investigated. The technique of <sup>15</sup>N tracing was used to quantify soil gross N transformation rates. We also measured soil biochemical properties as well as carbon (C) and N fractions to evaluate the controls on any changes in soil N cycling processes. We found that converting natural tropical forests to managed ecosystems shifts the soil N dynamics from nitrate-dominated N forms towards ammonium-dominated N forms, suggesting that managed ecosystems becoming conservative (i.e., lower ratio of autotrophic nitrification (<i>O</i><sub><i>NH4</i></sub>) to ammonium immobilization (<i>I</i><sub><i>NH4</i></sub>) and nitrous oxide (N<sub>2</sub>O) emissions and higher nitrate immobilization) than the natural tropical forest. The higher tendency of N loss (i.e., higher <i>O</i><sub><i>NH4</i></sub><i>/I</i><sub><i>NH4</i></sub> and N<sub>2</sub>O emissions) of the natural tropical forest was mainly due to the higher concentrations of soil total N and hydrolysable ammonium N and microbial biomass, which stimulated <i>O</i><sub><i>NH4</i></sub>. Lower microbial biomass, hydrolysable ammonium N, particulate organic C, and gross N mineralization, however, significantly decreased <i>O</i><sub><i>NH4</i></sub> in managed ecosystems. Our study also showed a pivotal role of soil C and N fractions in controlling soil heterotrophic nitrification, which enhanced significantly with decreasing amino sugar N, amino acid N, dissolved organic C, easily oxidizable organic C, and light fraction organic C. Our findings highlighted the pivotal role of soil C and N fractions in regulating soil N cycling under future land use changes.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Converting acidic forests to managed plantations reduces soil nitrogen loss by inhibiting autotrophic nitrification while inducing nitrate immobilization in the tropics\",\"authors\":\"Qilin Zhu, Ahmed S. Elrys, Lijun Liu, Yunxing Wan, Ruoyan Yang, Jinxia Mou, Yunzhong Chen, Yuqin Wang, Juan Liu, Tongbin Zhu, Yanzheng Wu, Shuirong Tang, Lei Meng, Jinbo Zhang, Christoph Müller\",\"doi\":\"10.1007/s00374-023-01777-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil gross nitrogen (N) transformation rates are highly sensitive to land use change. However, understanding the effect of land use change on internal N cycling patterns and its underlying mechanisms in tropical soils remains elusive. Here, four typical land uses including forest (> 400 years), eucalyptus (15 years), rubber (35 years), and paddy field (40 years) plantations in tropical region of China were investigated. The technique of <sup>15</sup>N tracing was used to quantify soil gross N transformation rates. We also measured soil biochemical properties as well as carbon (C) and N fractions to evaluate the controls on any changes in soil N cycling processes. We found that converting natural tropical forests to managed ecosystems shifts the soil N dynamics from nitrate-dominated N forms towards ammonium-dominated N forms, suggesting that managed ecosystems becoming conservative (i.e., lower ratio of autotrophic nitrification (<i>O</i><sub><i>NH4</i></sub>) to ammonium immobilization (<i>I</i><sub><i>NH4</i></sub>) and nitrous oxide (N<sub>2</sub>O) emissions and higher nitrate immobilization) than the natural tropical forest. The higher tendency of N loss (i.e., higher <i>O</i><sub><i>NH4</i></sub><i>/I</i><sub><i>NH4</i></sub> and N<sub>2</sub>O emissions) of the natural tropical forest was mainly due to the higher concentrations of soil total N and hydrolysable ammonium N and microbial biomass, which stimulated <i>O</i><sub><i>NH4</i></sub>. Lower microbial biomass, hydrolysable ammonium N, particulate organic C, and gross N mineralization, however, significantly decreased <i>O</i><sub><i>NH4</i></sub> in managed ecosystems. Our study also showed a pivotal role of soil C and N fractions in controlling soil heterotrophic nitrification, which enhanced significantly with decreasing amino sugar N, amino acid N, dissolved organic C, easily oxidizable organic C, and light fraction organic C. Our findings highlighted the pivotal role of soil C and N fractions in regulating soil N cycling under future land use changes.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-023-01777-7\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-023-01777-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Converting acidic forests to managed plantations reduces soil nitrogen loss by inhibiting autotrophic nitrification while inducing nitrate immobilization in the tropics
Soil gross nitrogen (N) transformation rates are highly sensitive to land use change. However, understanding the effect of land use change on internal N cycling patterns and its underlying mechanisms in tropical soils remains elusive. Here, four typical land uses including forest (> 400 years), eucalyptus (15 years), rubber (35 years), and paddy field (40 years) plantations in tropical region of China were investigated. The technique of 15N tracing was used to quantify soil gross N transformation rates. We also measured soil biochemical properties as well as carbon (C) and N fractions to evaluate the controls on any changes in soil N cycling processes. We found that converting natural tropical forests to managed ecosystems shifts the soil N dynamics from nitrate-dominated N forms towards ammonium-dominated N forms, suggesting that managed ecosystems becoming conservative (i.e., lower ratio of autotrophic nitrification (ONH4) to ammonium immobilization (INH4) and nitrous oxide (N2O) emissions and higher nitrate immobilization) than the natural tropical forest. The higher tendency of N loss (i.e., higher ONH4/INH4 and N2O emissions) of the natural tropical forest was mainly due to the higher concentrations of soil total N and hydrolysable ammonium N and microbial biomass, which stimulated ONH4. Lower microbial biomass, hydrolysable ammonium N, particulate organic C, and gross N mineralization, however, significantly decreased ONH4 in managed ecosystems. Our study also showed a pivotal role of soil C and N fractions in controlling soil heterotrophic nitrification, which enhanced significantly with decreasing amino sugar N, amino acid N, dissolved organic C, easily oxidizable organic C, and light fraction organic C. Our findings highlighted the pivotal role of soil C and N fractions in regulating soil N cycling under future land use changes.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.