{"title":"用锡基串联电催化剂将二氧化碳还原为乙醇","authors":"","doi":"10.1038/s41560-023-01390-w","DOIUrl":null,"url":null,"abstract":"The electrochemical CO2 reduction reaction can produce carbon-based fuels; however, the design of more efficient catalysts has proved challenging. A tandem electrocatalyst comprising SnS2 nanosheets and Sn single atoms bound to three oxygen atoms on a carbon support is shown to exhibit high catalytic performance for CO2 reduction to ethanol, including high selectivity.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"8 12","pages":"1317-1318"},"PeriodicalIF":60.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of CO2 to ethanol over a tin-based tandem electrocatalyst\",\"authors\":\"\",\"doi\":\"10.1038/s41560-023-01390-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical CO2 reduction reaction can produce carbon-based fuels; however, the design of more efficient catalysts has proved challenging. A tandem electrocatalyst comprising SnS2 nanosheets and Sn single atoms bound to three oxygen atoms on a carbon support is shown to exhibit high catalytic performance for CO2 reduction to ethanol, including high selectivity.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"8 12\",\"pages\":\"1317-1318\"},\"PeriodicalIF\":60.1000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-023-01390-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-023-01390-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Reduction of CO2 to ethanol over a tin-based tandem electrocatalyst
The electrochemical CO2 reduction reaction can produce carbon-based fuels; however, the design of more efficient catalysts has proved challenging. A tandem electrocatalyst comprising SnS2 nanosheets and Sn single atoms bound to three oxygen atoms on a carbon support is shown to exhibit high catalytic performance for CO2 reduction to ethanol, including high selectivity.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.